Skip to main content
Log in

Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis

  • Special Feature: Original Paper
  • 11th International Congress on Extremophiles
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The maturation of [NiFe]-hydrogenases requires a number of accessory proteins, which include hydrogenase-specific endopeptidases. The endopeptidases carry out the final cleavage reaction of the C-terminal regions of [NiFe]-hydrogenase large subunit precursors. The hyperthermophilic archaeon Thermococcus kodakarensis harbors two [NiFe]-hydrogenases, a cytoplasmic Hyh and a membrane-bound Mbh, along with two putative hydrogenase-specific endopeptidase genes. In this study, we carried out a genetic examination on the two endopeptidase genes, TK2004 and TK2066. Disruption of TK2004 resulted in a strain that could not grow under conditions requiring hydrogen evolution. The Mbh large subunit precursor (pre-MbhL) in this strain was not processed at all whereas Hyh cleavage was not affected. On the other hand, disruption of TK2066 did not affect the growth of T. kodakarensis under the conditions examined. Cleavage of the Hyh large subunit precursor (pre-HyhL) was impaired, but could be observed to some extent. In a strain lacking both TK2004 and TK2066, cleavage of pre-HyhL could not be observed. Our results indicate that pre-MbhL cleavage is carried out solely by the endopeptidase encoded by TK2004. Pre-HyhL cleavage is mainly carried out by TK2066, but TK2004 can also play a minor role in this cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237

    Article  CAS  PubMed  Google Scholar 

  • Dernedde J, Eitinger T, Patenge N, Friedrich B (1996) hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur J Biochem 235:351–358

    Article  CAS  PubMed  Google Scholar 

  • Fritsche E, Paschos A, Beisel HG, Böck A, Huber R (1999) Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli. J Mol Biol 288:989–998

    Article  CAS  PubMed  Google Scholar 

  • Hirata A, Kanai T, Santangelo TJ, Tajiri M, Manabe K, Reeve JN, Imanaka T, Murakami KS (2008) Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol Microbiol 70:623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäger D, Förstner KU, Sharma CM, Santangelo TJ, Reeve JN (2014) Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genom 15:684

    Article  Google Scholar 

  • Jung JH, Kim YT, Jeon EJ, Seo DH, Hensley SA, Holden JF, Lee JH, Park CS (2014) Complete genome sequence of hyperthermophilic archaeon Thermococcus sp. ES1. J Biotechnol 174:14–15

    Article  CAS  PubMed  Google Scholar 

  • Kanai T, Ito S, Imanaka T (2003) Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:1705–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282

    Article  CAS  PubMed  Google Scholar 

  • Kanai T, Matsuoka R, Beppu H, Nakajima A, Okada Y, Atomi H, Imanaka T (2011) Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 193:3109–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, Choi AR, Jeon JH, Lee JH, Lee HS, Kang SG (2013) CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Applied Environ Microbiol 79:2048–2053

    Article  CAS  Google Scholar 

  • Kwon S, Nishitani Y, Watanabe S, Hirao Y, Imanaka T, Kanai T, Atomi H, Miki K (2016) Crystal structure of a [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1. Proteins 84:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha SS, Kwon KK, Kim HT, Park CJ, Lee HW, Kim SI, Chun J, Colwell RR, Kim SJ, Lee JH (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE, Scott RA, Adams MWW, Westpheling J (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Applied Environ Microbiol 77:2232–2238

    Article  CAS  Google Scholar 

  • Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189:2683–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Applied Environ Microbiol 60:4559–4566

    CAS  Google Scholar 

  • Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE 5:e10132

    Article  PubMed  PubMed Central  Google Scholar 

  • Robb FT, Place AR (1995) Media for thermophiles. In: Robb FT, Place AR (eds) Archaea: a laboratory manual—thermophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 167–168

    Google Scholar 

  • Rossmann R, Sauter M, Lottspeich F, Böck A (1994) Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem 220:377–384

    Article  CAS  PubMed  Google Scholar 

  • Rossmann R, Maier T, Lottspeich F, Böck A (1995) Characterization of a protease from Escherichia coli Involved in hydrogenase maturation. Eur J Biochem 227:545–550

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santangelo TJ, Cubonová L, Reeve JN (2008) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Applied Environ Microbiol 74:3099–3104

    Article  CAS  Google Scholar 

  • Santangelo TJ, Cubonová L, Reeve JN (2011) Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol Microbiol 81:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki D, Watanabe S, Matsumi R, Shoji T, Yasukochi A, Tagashira K, Fukuda W, Kanai T, Atomi H, Imanaka T, Miki K (2013) Identification and structure of a novel Archaeal HypB for [NiFe] hydrogenase maturation. J Mol Biol 425:1627–1640

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Applied Environ Microbiol 71:3889–3899

    Article  CAS  Google Scholar 

  • Schut GJ, Nixon WJ, Lipscomb GL, Scott RA, Adams MWW (2012) Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hypertherrnophilic archaeon Pyrococcus furiosus. Front Microbiol 3:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Schut GJ, Boyd ES, Peters JW, Adams MWW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37:182–203

    Article  CAS  PubMed  Google Scholar 

  • Sun JS, Hopkins RC, Jenney FE, McTernan PM, Adams MWW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS ONE 5:e10526

    Article  PubMed  PubMed Central  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic Archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  CAS  PubMed  Google Scholar 

  • Theodoratou E, Paschos A, Magalon A, Fritsche E, Huber R, Böck A (2000) Nickel serves as a substrate recognition motif for the endopeptidase involved in hydrogenase maturation. Eur J Biochem 267:1995–1999

    Article  CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal-structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Sasaki D, Tominaga T, Miki K (2012) Structural basis of [NiFe] hydrogenase maturation by Hyp proteins. Biol Chem 393:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kawashima T, Nishitani Y, Kanai T, Wada T, Inaba K, Atomi H, Imanaka T, Miki K (2015) Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Proc Natl Acad Sci USA 112:7701–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem 284:28137–28145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F (2009) Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol 10:R70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Core Research for Evolutional Science and Technology program of the Japan Science and Technology Agency to H.A. and T.I. within the research area ‘Creation of Basic Technology for Improved Bioenergy Production through Functional Analysis and Regulation of Algae and Other Aquatic Microorganisms’. The work was also partially funded to T.K. by JSPS KAKENHI (Grant Number 26292038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruyuki Atomi.

Additional information

Communicated by A. Driessen.

This article is part of a special feature based on the 11th International Congress on Extremophiles held in Kyoto, Japan, September 12–16, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanai, T., Yasukochi, A., Simons, JR. et al. Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis . Extremophiles 21, 27–39 (2017). https://doi.org/10.1007/s00792-016-0875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0875-1

Keywords

Navigation