Skip to main content
Log in

Active site modeling in copper azurin molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the polypeptide chain, using for the ligand residues a set of charges that is modified with respect to the apo form of the protein by the presence of the copper ion.

The results show that the different charge values do not lead to relevant effects on the geometry of the active site of the protein, as long as bond distance constraints are used for all the five ligand atoms. The distance constraint on the O atom of Gly45 can be removed without altering the active site geometry. The coordination between Cu and the other axial ligand Met121 is outlined as being flexible. Differences are found between the bonds of the copper ion with the two apparently equivalent Nδ1 atoms of His46 and His117.

The overall findings are discussed in connection with the issue of determining a model for the active site of azurin suitable to be used in molecular dynamics simulations under unfolding conditions.

Figure Model of azurin active site. Copper ligand residues are cut off at Cα position except Gly45, for which the portion of backbone connecting it to His46 is shown. Only polar H atoms are shown. All atoms are in standard colors (Cu in violet), and the five ligands are labeled

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shen J, Wong CF, Subramanian S, Albright TA, McCammon JA (1990) J Comput Chem 11:346-350

    CAS  Google Scholar 

  2. Fields BA, Guss JM, Freeman HC (1991) J Mol Biol 222:1053–1065

    CAS  PubMed  Google Scholar 

  3. Banci L, Carloni P, La Penna G, Orioli PL (1992) J Am Chem Soc 114:6994–7001

    CAS  Google Scholar 

  4. Wang CX, Bizzarri AR, Xu YW, Cannistraro S (1994) Chem Phys 183:155–166

    Article  CAS  Google Scholar 

  5. Mark AE, van Gunsteren WF (1994) J Mol Biol 240:167–176

    Article  CAS  PubMed  Google Scholar 

  6. Falconi M, Gallimbeni R, Paci E (1996) J Comput Aided Mol Design 10:490–498

    CAS  Google Scholar 

  7. Ungar LW, Scherer NF, Voth GA (1997) Biophys J 72:5–17

    CAS  PubMed  Google Scholar 

  8. Subramanian V, Shankaranarayanan C, Nair BU, Kanthimathi M, Manickkavachagam R, Ramasami T (1997) Chem Phys Lett 274:275–280

    Article  CAS  Google Scholar 

  9. De Kerpel JO, Ryde U (1999) Proteins 36:157–174

    PubMed  Google Scholar 

  10. Gray HB, Malmström BG (2000) J Biol Inorg Chem 5:551–559

    CAS  PubMed  Google Scholar 

  11. Arcangeli C, Bizzarri AR, Cannistraro S (1999) Biophys Chem 78:247–257

    Article  CAS  Google Scholar 

  12. Luise A, Falconi M, Desideri A (2000) Proteins 39:56–67

    Article  CAS  PubMed  Google Scholar 

  13. Arcangeli C, Bizzarri AR, Cannistraro S (2001) Biophys Chem 90:45–56

    Article  CAS  PubMed  Google Scholar 

  14. Romero C, Moratal JM, Donaire A (1998) FEBS Lett 440:93–98

    CAS  PubMed  Google Scholar 

  15. De Beer S, Wittung-Stafshede P, Leckner J, Karlsson BG, Winkler JR, Gray HB, Malmström BG, Solomon EI, Hedman B, Hodgson KO (2000) Inorg Chim Acta 297:278–282

    Article  Google Scholar 

  16. Swart M (2002) Density functional theory applied to copper proteins. PhD thesis, Rijksuniversiteit Groningen, Groningen

  17. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  CAS  Google Scholar 

  18. Swart M, van den Bosch M, Berendsen HJC, Canters GW, Mark AE, Snijders JG (2003) in preparation

  19. Canters GW, Kalverda AP, Hoitink CW (1993) Structure and activity of type I Cu sites. In: Welch AJ, Chapman SK (eds) The chemistry of the copper and zinc triads. The Royal Society of Chemistry, Cambridge, pp 30–37

  20. Pozdnyakova I, Guidry J, Wittung-Stafshede P (2000) J Am Chem Soc 122:6337–6338

    Article  CAS  Google Scholar 

  21. Pozdnyakova I, Guidry J, Wittung-Stafshede P (2001) J Biol Inorg Chem 6:182–188

    Article  CAS  PubMed  Google Scholar 

  22. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Comm 91:43–56

    Article  CAS  Google Scholar 

  23. Lindahl E, Hess B, van der Spoel D (2001) J Mol Mod 7:306–317

    CAS  Google Scholar 

  24. van Gunsteren WF, Billeter FR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, Zürich

    Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    PubMed  Google Scholar 

  26. Nar H, Messerschmidt A, Huber R, van de Kamp M, Canters GW (1991) J Mol Biol 218:427-447

    CAS  PubMed  Google Scholar 

  27. Nar H, Messerschmidt A, Huber R, van de Kamp M, Canters GW (1991) J Mol Biol 221:765-772

    CAS  PubMed  Google Scholar 

  28. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

  29. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comp Chem 18:1463–1472

    Article  CAS  Google Scholar 

  30. Miyamoto S, Kollman PA (1992) J Comp Chem 13:952–962

    CAS  Google Scholar 

  31. Berendsen HJC, Postma JPM, Di Nola A, Haak JR (1984) J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  32. Hol WGJ, van Duijnen PT, Berendsen HJC (1978) Nature 273:443–446

    Google Scholar 

  33. Matthews BW (1993) Curr Opin Struct Biol 3:589–593

    Article  CAS  Google Scholar 

  34. Kalverda AP, Ubbink M, Gilardi G, Wijmenga SS, Crawford A, Jeuken LJC, Canters GW (1999) Biochemistry 38:12690–12697

    Article  CAS  PubMed  Google Scholar 

  35. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    CAS  PubMed  Google Scholar 

  36. La Croix LB, Shadle SE, Wang Y, Averill BA, Hedman B, Hodgson KO, Solomon EI (1996) J Am Chem Soc 118:7755-7768

    Article  Google Scholar 

  37. Guckert JA, Lowery MD, Solomon EI (1995) J Am Chem Soc 117:2817–2844

    CAS  Google Scholar 

  38. Gray HB, Malmström BG (1983) Comments Inorg Chem 2:203–209

    CAS  Google Scholar 

  39. Malmström BG (1994) Eur J Biochem 223:207–216

    Google Scholar 

  40. Williams RJP (1995) Eur J Biochem 234:363–381

    CAS  PubMed  Google Scholar 

  41. Ryde U, Olsson MHM, Pierloot K, Roos BO (1996) J Mol Biol 261:586–596

    CAS  PubMed  Google Scholar 

  42. Olsson MHM, Ryde U, Roos BO, Pierloot K (1998) J Biol Inorg Chem 3:109–125

    Article  CAS  Google Scholar 

  43. Pierloot K, De Kerpel JO, Ryde U, Olsson MHM, Roos BO (1998) J Am Chem Soc 120:13156–13166

    CAS  Google Scholar 

  44. Ryde U, Olsson MHM (2001) Int J Quantum Chem 81:335–347

    CAS  Google Scholar 

  45. Swart M, van den Bosch M, Berendsen HJC, Canters GW, Snijders JG (2003) in preparation

  46. Koradi R, Billeter M, Wüthrich K (1996) J Mol Graphics 14:51–55

    CAS  Google Scholar 

Download references

Acknowledgements

B.R. is grateful to Alan Mark and Alessandra Villa for helpful discussions and hospitality in the Molecular Dynamics group at the Rijksuniversiteit Groningen. Thanks are also due to Regione Calabria for a fellowship and to CNR (Consiglio Nazionale delle Ricerche) for financial support. M.S. thanks NWO/CW and Unilever Research Vlaardingen for their financial support. MOLMOL [46] was used for the protein displays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Guzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzuti, B., Swart, M., Sportelli, L. et al. Active site modeling in copper azurin molecular dynamics simulations. J Mol Model 10, 25–31 (2004). https://doi.org/10.1007/s00894-003-0165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0165-6

Keywords

Navigation