Skip to main content
Log in

Semi-empirical topological method for prediction of the gas chromatographic relative retention times of Polybrominated Diphenyl Ethers (PBDEs)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantitative structure-retention relationship (QSRR) studies have proved to be a valuable approach in the prediction of the gas chromatographic relative retention time (GC-RRT) of organic chemicals. Polybrominated diphenyl ether (PBDE) congeners are now ubiquitous environmental pollutants. Of the 209 possible PBDE congeners, 126 have been synthesized and their retention-time data on seven different stationary phases has been determined [Korytár et al.:J Chromatography A 1065:239–249, (2005)]. To estimate and predict the GC-RRT values of all 209 PBDEs on different stationary phases, 17 molecular descriptors from the semi-experience algorithm in MOPAC program and the topological structures of PBDE molecules were calculated. By means of the VSMP (variable selection and modeling based on prediction) program [Liu et al.:J Chem Inf Comput Sci 43:964–969, (2003)], six optimal descriptors were selected to develop a QSRR model for the prediction of GC-RRT of PBDE. The descriptors contain some energy information (such as the energy of the lowest unoccupied molecular orbital and highest occupied molecular orbital) and topological information (the number of ortho-, meta-, and para- substituted bromine atoms) as well as the molecular weight (lnM W ). All the models developed were cross-validated using leave-one-out (LOO). For seven GC stationary phases, the estimated correlation coefficients (r 2) are all more than 0.985 but for the column CP-Sil 19 (r 2 = 0.9392) and LOO-validated correlation coefficients (q 2) all more than 0.985 but for the column CP-Sil 19 (q 2 = 0.9345).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Viberg H, Fredriksson A, Eriksson P (2003) Toxicol Appl Pharmacol 192:95–106

    Article  CAS  Google Scholar 

  2. Chen JW, Harner T, Yang P, Quan X, Chen S, Schramm KW, Kettrup A (2003) Chemosphere 51:577–584

    Article  CAS  Google Scholar 

  3. de Wit CA (2002) Chemoshphere 46:583–624

    Article  Google Scholar 

  4. McDonald TA (2002) Chemosphere 46:745–755

    Article  CAS  Google Scholar 

  5. Strandberg B, Dodder NG, Basu I, Hites RA (2001) Environ Sci Technol 35:1075–1083

    Article  Google Scholar 

  6. Manchester-Nessvig JB, Valters K, Sonzogni WC (2001) Environ Sci Technol 35:1072–1077

    Article  Google Scholar 

  7. Palm A, Cousins LT (2002) Environ Pollut 117:195–213

    Article  CAS  Google Scholar 

  8. Domingo JL (2004) J Chromatogr A 1054:321–326

    Article  CAS  Google Scholar 

  9. Darnerud PO, Wong J, Bergman Å, Ilbäck NG (2005) Toxicology 210:159–167

    Article  CAS  Google Scholar 

  10. Hallgren S, Darnerud PO (2002) Toxicology 177:227–243

    Article  CAS  Google Scholar 

  11. Korytár P, Covaci A, Boer JD, Gelbin A, Brinkman UAT (2005) J Chromatogr A 1065:239–249

    Article  Google Scholar 

  12. Rayne S, Ikonomou MG (2003) J Chromatogr A 1016:235–248

    Article  CAS  Google Scholar 

  13. Liu SS, Cao CZ, Li ZL (1998) J Chem Inf Comput Sci 38:387–394

    Article  CAS  Google Scholar 

  14. Liu SS, Yin CS, Cai SX, Li ZL (2001) J Chem Inf Comput Sci 41:321–329

    Article  CAS  Google Scholar 

  15. Liu SS (2005) Structural characterization of organic compounds by the molecular electronegativity distance vector (MEDV). Chinese Higher Education Press, Beijing

    Google Scholar 

  16. Liu SS, Liu Y, Yin DQ, Wang LS (2005) Chin Chem Lett 16:1559–1662

    CAS  Google Scholar 

  17. Wang YW, Li A, Liu HX, Zhang QH, Ma WP, Song WL, Jiang GB (2006 ) J Chromatogr A 1103:314–328

    Article  CAS  Google Scholar 

  18. Wang YW, Liu HX, Zhao CY, Liu HX, Cai ZW, Jiang GB (2005) Environ Sci Technol 39:4961–4966

    Article  CAS  Google Scholar 

  19. Liu SS, Cui SH, Shi YY, Wang LS (2002) Internet Electron J Mol Des 1:610–619

    CAS  Google Scholar 

  20. Liu SS, Liu HL, Yin CS, Wang LS (2003) J Chem Inf Comput Sci 43:964–969

    Article  CAS  Google Scholar 

  21. Liu SS, Yin DQ, Cui SH, Wang LS (2005) Chin J Chem 23:622–626

    Article  CAS  Google Scholar 

  22. Liu SS, Liu Y, Yin DQ, Wang XD, Wang LS (2006) J Sep Sci 29:296–301

    Article  CAS  Google Scholar 

  23. Makino M (1999) Chemosphere 9:893–903

    Article  Google Scholar 

  24. Tuppurainen K, Ruuskanen J (2000) Chemosphere 41:843–848

    Article  CAS  Google Scholar 

  25. Rayne S, Ikonomou MG (2003) Anal Chem 75:1049–1057

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are especially grateful to 973 program (No. 2003CB415002) and Shanghai Basic Research Program (No. 06JC14067) and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No. 200355) and Guangxi Thousands of Talents Program (No. 2003208) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Shen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HY., Liu, SS. & Qin, LT. Semi-empirical topological method for prediction of the gas chromatographic relative retention times of Polybrominated Diphenyl Ethers (PBDEs). J Mol Model 13, 611–627 (2007). https://doi.org/10.1007/s00894-007-0195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0195-6

Keywords

Navigation