Skip to main content

Advertisement

Log in

Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cytoglobin (Cyg)—a new member of the vertebrate heme globin family—is expressed in many tissues of the human body but its physiological role is still unclear. It may deliver oxygen under hypoxia, serve as a scavenger of reactive species or be involved in collagen synthesis. This protein is usually six-coordinated and binds oxygen by a displacement of the distal HisE7 imidazole. In this paper, the results of 60 ns molecular dynamics (MD) simulations of dioxygen diffusion inside Cyg matrix are discussed. In addition to a classical MD trajectory, an approximate Locally Enhanced Sampling (LES) method has been employed. Classical diffusion paths were carefully analyzed, five cavities in dynamical structures were determined and at least four distinct ligand exit paths were identified. The most probable exit/entry path is connected with a large tunnel present in Cyg. Several residues that are perhaps critical for kinetics of small gaseous diffusion were discovered. A comparison of gaseous ligand transport in Cyg and in the most studied heme protein myoglobin is presented. Implications of efficient oxygen transport found in Cyg to its possible physiological role are discussed.

Pathways P3 (green), P3′ (red) and P3″ (blue). These pathways are located between G and H helices. Ligand moved from CavXe2Xe3 cavity to solvent using gateP3, gateP3′ or gateP3″. A detailed picture of the CavXe2Xe3 is available in Electronic Supplementary Materials (Fig. S13). CavXe2Xe3 constitute the main part of wide hydrophobic tunnel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kendrew JC (1963) Science 139:1259–1266

    Article  CAS  Google Scholar 

  2. Perutz MF (1979) Annu Rev Biochem 48:327–386

    Article  CAS  Google Scholar 

  3. Wittenberg JB (1970) Physiol Rev 50:559–636

    CAS  Google Scholar 

  4. Elber R, Karplus M (1987) Science 235:318–321

    Article  CAS  Google Scholar 

  5. Wittenberg BA, Wittenberg JB (1989) Annu Rev Physiol 51:857–878

    Article  CAS  Google Scholar 

  6. Perutz MF (1990) Annu Rev Physiol 52:1–25

    Article  CAS  Google Scholar 

  7. Springer BA, Siligar SG, Olson JS, Philips GN (1994) Chem Rev 94:699–714

    Article  CAS  Google Scholar 

  8. Tilton RF, Kuntz ID Jr, Petsko GA (1984) Biochem 23:2849–2857

    Article  CAS  Google Scholar 

  9. Meller J, Elber R (1998) Biophys J 74:789–802

    CAS  Google Scholar 

  10. Burmester T, Weich B, Reinhardt S, Hankeln T (2000) Nature 407:520–523

    Article  CAS  Google Scholar 

  11. Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K (2001) J Biol Chem 276:25318–25323

    Article  CAS  Google Scholar 

  12. Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) EMBO Rep 12:1146–1151

    Article  Google Scholar 

  13. Burmester T, Ebner B, Weich B, Hankeln T (2002) Mol Biol Evol 19:416–421

    CAS  Google Scholar 

  14. Riggs A, Gorr T (2006) PNAS 103:2469–2470

    Article  CAS  Google Scholar 

  15. Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, van Bockstaele D, Moens L, Dewilde S (2006) Neurosci Lett 10:146–151

    Article  CAS  Google Scholar 

  16. Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE (2004) J Biol Chem 279:44417–44426

    Article  CAS  Google Scholar 

  17. Schmid M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, Nevoll E, Saaler-Reinhardt S, Reuss S, Hankeln T, Burmester T (2004) J Biol Chem 279:8063–8069

    Article  CAS  Google Scholar 

  18. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, De Sanctis D, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) J Inorg Biochem 99:110–119

    Article  CAS  Google Scholar 

  19. Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, Seki S, Kawada N, Yoshizato K (2004) Lab Invest 84:91

    Article  CAS  Google Scholar 

  20. Dewilde S, Kieger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R, Moens L (2001) J Biol Chem 276:38949–38955

    Article  CAS  Google Scholar 

  21. De Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) J Mol Biol 336:917–927

    Article  CAS  Google Scholar 

  22. De Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Biochem Biophys Res Commun 316:1217–1221

    Article  CAS  Google Scholar 

  23. Nutt DR, Meuwly M (2004) Proc Natl Acad Sci USA 101:5998–6002

    Article  CAS  Google Scholar 

  24. Bossa C, Anselmi M, Roccatano D, Amadei A, Vallone B, Brunori M, Di Nola A (2004) Biophys J 86:3855–3862

    Article  CAS  Google Scholar 

  25. Bossa C, Amadei A, Daidone I, Anselmi M, Vallone B, Brunori M, Di Nola A (2005) Biophys J 89:465–474

    Article  CAS  Google Scholar 

  26. Teeter MM (2004) Protein Sci 13:313–318

    Article  CAS  Google Scholar 

  27. Cohen J, Arkhipov A, Braun R, Schulten K (2006) Biophys J 91:1844–1857

    Article  CAS  Google Scholar 

  28. Elber R, Karplus MJ (1990) J Amer Chem Soc 112:9161–9175

    Article  CAS  Google Scholar 

  29. Roitberg A, Elber R (1991) J Chem Phys 95:9277–9287

    Article  CAS  Google Scholar 

  30. Verkhivker G, Elber R, Nowak W (1992) J Chem Phys 97:7838–7841

    Article  CAS  Google Scholar 

  31. Nowak W, Czerminski R, Elber R (1991) J Amer Chem Soc 113:5627–5637

    Article  CAS  Google Scholar 

  32. Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y (2004) J Mol Biol 339:873–885

    Article  CAS  Google Scholar 

  33. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  34. Kalr L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comp Phys 151:283–312

    Article  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) J Molec Graphic 14:33–38

    Article  CAS  Google Scholar 

  36. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  37. Orlowski S, Nowak W (2007) Theor Chem Acc 117:253–258

    Article  CAS  Google Scholar 

  38. Karplus M, Straub J (1991) J Chem Phys 94:6737–6739

    Article  Google Scholar 

  39. Scott EE, Gibson QH, Olson JS (2001) J Biol Chem 276:5177–5188

    Article  CAS  Google Scholar 

  40. Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wulff M, Anfinrud PA (2003) Science 300:1944–1947

    Article  CAS  Google Scholar 

  41. Trent JT, Hargrove MS (2002) J Biol Chem 227:19538–19545

    Article  CAS  Google Scholar 

  42. Brunori M, Cutruzzola F, Savino C, Travaglini-Allocatelli C, Vallone B, Gibson QH (1999) Biophys J 76:1259–1269

    Article  CAS  Google Scholar 

  43. Tilton RF, Kuntz ID Jr, Petsko GA (1984) Biochemistry 23:2849–2857

    Article  CAS  Google Scholar 

  44. Brunori M (2001) Trends Biochem Sci 26:209–210

    Article  CAS  Google Scholar 

  45. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  46. Clamp M, Cuff J, Searle SM, Barton GJ (2004) Bioinformatics 20:426–427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant “Krok w przyszlosc-stypendia dla doktorantow” (S.O.), President of Poland grant “Superpracownia 2002” and in part by MEiN grant 2P04A 07229 (W.N.). We thank CI TASK for computer time and Albert Rutkowski for his assistance in computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieslaw Nowak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

RMSD analysis of all trajectories. The calculations were performed on Cα atoms using the initial structure as a reference. The blue plot represents the standard (LES1) trajectory. Black, red and green plots are from LES5, LES10 and LES15 trajectories, respectively (GIF 20 kb)

High resolution image file (TIF 451 kb)

Fig. S2

Energy plots for the standard (LES1) trajectory, divided into total energy (black), kinetic (red) and potential (blue). The simulations are energetically stable (GIF 7 kb)

High resolution image file (EPS 1871 kb)

Fig. S3

Energy plots for the LES5 trajectory, divided into total energy (black), kinetic (red) and potential (blue). The simulations are energetically stable (GIF 7 kb)

High resolution image file (EPS 1863 kb)

Fig. S4

Energy plots for the LES10 trajectory, divided into total energy (black), kinetic (red) and potential (blue). The simulations are energetically stable (GIF 7 kb)

High resolution image file (EPS 1870 mb)

Fig. S5

Energy plots for the LES15 trajectory, divided into total energy (black), kinetic (red) and potential (blue). The simulations are energetically stable (GIF 7 kb)

High resolution image file (EPS 1874 kb)

Fig. S6

Temperature observed in the standard (LES1) trajectory. A value of the temperature achieved stabilization. The mean temperature is 299.72 ± 2.06 K (GIF 29 kb)

High resolution image file (EPS 1536 kb)

Fig. S7

Temperature observed in the LES5 trajectory. A value of the temperature achieved stabilization. The mean temperature is 299.74 ± 2.07 K (GIF 7 kb)

High resolution image file (EPS 1862 kb)

Fig. S8

Temperature observed in the LES10 trajectory. A value of the temperature achieved stabilization. The mean temperature is 299.74 ± 2.07 K (GIF 7 kb)

High resolution image file (EPS 1870 kb)

Fig. S9

Temperature observed in the LES15 trajectory. A value of the temperature achieved stabilization. The mean temperature is 299.74 ± 2.09 K (GIF 7 kb)

High resolution image file (EPS 1874 kb)

Fig. S10

Amino acids composition of the heme cavity (HemeCav). All phenylalanine residues are represented in red, leucines are displayed in green, Val85 in blue and His81 in yellow. The cytoglobin surface is represented in blue and the heme group with the proximal histidine is black (GIF 158 kb)

High resolution image file (TIF 2501 kb)

Fig. S11

All amino acids whose participate in building of the Xe1 cavity (CavXe1). All leucines are displayed in green and rest of the amino acids are properly labeled. The cytoglobin surface is represented in blue and the heme group with the proximal histidine is black (GIF 176 kb)

High resolution image file (TIF 2319 kb)

Fig. S12

All amino acids whose participate in building of the Xe4 cavity (CavXe4). The Cyg surface is represented in blue and the heme group with the proximal histidine is black (GIF 143 kb)

High resolution image file (TIF 2294 kb)

Fig. S13

All amino acids whose participate in building of the Xe2 Xe3 cavity (CavXe2Xe3). The color scheme is the same as on S10–S12 figures. Residue Ser128 is represented in pink, Val 93 is blue. The Cyg surface is represented in blue and the heme group with the proximal histidine is black (GIF 155 kb)

High resolution image file (TIF 2479 kb)

Fig. S14

All amino acids whose participate in building of the FE cavity (CavFE). The color scheme is the same as on previous figures. Residue Phe124 is represented in pink. The Cyg surface is represented in blue and the heme group with the proximal histidine is black (GIF 179 kb)

High resolution image file (TIF 2352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlowski, S., Nowak, W. Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin. J Mol Model 13, 715–723 (2007). https://doi.org/10.1007/s00894-007-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0203-x

Keywords

Navigation