Skip to main content
Log in

Molecular trigger for pre-transfer editing pathway in Valyl-tRNA synthetase: A molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Pre-transfer editing pathway in Valyl-tRNA synthetase (ValRS) is a very important process to maintain the high fidelity of protein synthesis. However, molecular basis for this pathway remains unclear. Here we employed molecular dynamics (MD) simulation to study two complexes, ValRS·tRNAval·Val-AMP (complex V) and ValRS·tRNAval·Thr-AMP (complex T), and compared their simulation trajectories, in order to understand how the pre-transfer editing pathway is triggered by the noncognate substrate Thr-AMP. The MD simulations showed that the binding of Thr-AMP to ValRS led to different motions from those in complex V: clockwise rotation of the editing domain along the hinge region, and strong motions in the catalytic domain, especially in KMSKS loop. We found that the changed motion of Trp495 induced by Thr-AMP serves as a signal to discriminate Thr-AMP from Val-AMP, and the rigid 491ILFL494 segment then propagates this signal from Trp495 to Asp490 and induces dissociation of the salt-bridge Asp490-Arg346 and formation of the salt-bridge Glu189-Lys533. The change in salt-bridges alters the motion of KMSKS loop and the editing domain, and eventually triggers the pre-transfer editing pathway. This study provides a model for the molecular trigger of the pre-transfer editing pathway in ValRS, and is useful for further exploring this process.

Domain motions in ValRS·tRNAval·Val-AMP (complex V) and ValRS·tRNAval·Thr-AMP (complex T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ibba M, Söll D (2000) Annu Rev Biochem 69:617–650

    Article  CAS  Google Scholar 

  2. Ibba M, Söll D (1999) Science 286:1893–1897

    Article  CAS  Google Scholar 

  3. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Nature 443:50–55

    Article  CAS  Google Scholar 

  4. Pauling L (1957) The probability of errors in the processes of synthesis of protein molecules. Festschrift für Prof Dr Arthur Stoll zum siebzigsten Geburtstag. Birkhäuse, Basel, In, pp 597–602

    Google Scholar 

  5. Loftfield RB (1963) Biochem J 89:82–92

    CAS  Google Scholar 

  6. Jakubowski H, Goldman E (1992) Microbiol Rev 56:412–429

    CAS  Google Scholar 

  7. Arnez JG, Moras D (1997) Trends Biochem Sci 22:211–216

    Article  CAS  Google Scholar 

  8. Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, Konno M, Hendrickson TL, Schimmel P, Yokoyama S (1998) Science 280:578–582

    Article  CAS  Google Scholar 

  9. Lin L, Hale S, Schimmel P (1996) Nature 384:33–34

    Article  CAS  Google Scholar 

  10. Hendrickson T, Nomanbhoy T, de Crecy-Lagard V, Fukai S, Nureki O, Yokoyama S, Schimmel P (2002) Mol Cell 9:353–362

    Article  CAS  Google Scholar 

  11. Lincecum TL Jr, Yaremchuk A, Mursinna RS, Williams AM, Sproat BS, Eynde WVD, Link A, Calenbergh SV, Grøtli M, Martinis SA, Cusack S (2003) Mol Cell 11:951–963

    Article  CAS  Google Scholar 

  12. Silvian LF, Wang J, Steitz TA (1999) Science 285:1074–1077

    Article  CAS  Google Scholar 

  13. Fukai S, Nureki O, Sekine SI, Shimada A, Tao J, Vassylyev DG, Yokoyama S (2000) Cell 103:793–803

    Article  CAS  Google Scholar 

  14. Boniecki MT, Vu MT, Betha AK, Martinis SA (2008) Proc Natl Acad Sci USA 105:19223–19228

    Article  CAS  Google Scholar 

  15. Bharatham N, Bharatham K, Leea Y, Lee KW (2009) Biophys Chem 143:34–43

    Article  CAS  Google Scholar 

  16. Feller SE, MacKerell AD (2000) J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  17. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  18. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  19. Ryckaert J, Ciccotti G, Berendsen H (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  20. Case D, Pearlman DA, Caldwell JW, Cheathum TE, Ross WS, Simmerling C, Darden T, Merz KM, Stanton RV, Cheng A, Vincent JJ, Crowley M, Ferguson BM, Radmen R, Seibel GL, Singh UC, Weiner P, Kollman P (1997) AMBER 5.0. University of California, San Francisco, CA

  21. Estabrook RA, Luo J, Purdy MM, Sharma V, Weakliem P, Bruice TC, Reich NO (2005) Proc Natl Acad Sci USA 102:994–999

    Article  CAS  Google Scholar 

  22. Barrett CP, Noble MEM (2005) J Biol Chem 280:13993–14005

    Article  CAS  Google Scholar 

  23. Shen H, Xu F, Hu H, Wang F, Wu Q, Huang Q, Wang H (2008) J Struct Biol 164:281–292

    Article  CAS  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  25. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MRK (2007) Science 316:1759–1761

    Article  CAS  Google Scholar 

  26. Mursinna RS, Tommie L, Lincecum J, Martinis SA (2001) Biochemistry 40:5376–5381

    Article  CAS  Google Scholar 

  27. Brooks BR, Janezi D, Karplus M (1995) J Comput Chem 16:1522–1542

    Article  CAS  Google Scholar 

  28. Williams AM, Martinis SA (2006) Proc Natl Acad Sci USA 103:3586–3591

    Article  CAS  Google Scholar 

  29. O’Donoghue P, Luthey-Schulten Z (2003) Microbiol Mol Biol Rev 67:550–573

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (Grant No. 30570406), the HI-tech Research and Development Program of China (Grant No. 2008AA02Z311), and Shanghai Supercomputer Center of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Yu, L. & Huang, Q. Molecular trigger for pre-transfer editing pathway in Valyl-tRNA synthetase: A molecular dynamics simulation study. J Mol Model 17, 555–564 (2011). https://doi.org/10.1007/s00894-010-0754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0754-0

Keywords

Navigation