Skip to main content

Advertisement

Log in

Molecular dynamics simulation of drug uptake by polymer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Drug uptake by polymer was modeled using a molecular dynamics (MD) simulation technique. Three drugs—doxorubicin (water soluble), silymarin (sparingly water soluble) and gliclazide (water insoluble)—and six polymers with varied functional groups—alginic acid, sodium alginate, chitosan, Gantrez AN119 (methyl-vinyl–ether-co-malic acid based), Eudragit L100 and Eudragit RSPO (both acrylic acid based)—were selected for the study. The structures were modeled and minimized using molecular mechanics force field (MM+). MD simulation (Gromacs-forcefield, 300 ps, 300 K) of the drug in the vicinity of the polymer molecule in the presence of water molecules was performed, and the interaction energy (IE) between them was calculated. This energy was evaluated with respect to electric-dipole, van der Waals and hydrogen bond forces. A good linear correlation was observed between IE and our own previous data on drug uptake* [R 2 = 0.65, \( {\hbox{R}}_{\rm{adj}}^2 = 0.65,{\hbox{R}}_{\rm{pre}}^2 = 0.56, \) and a F ratio of 30.25, P < 0.001; Devarajan et al. (2005) J Biomed Nanotechnol 1:1–9]. Maximum drug uptake by the polymeric nanoparticles (NP) was achieved in water as the solvent environment. Hydrophilic interaction between NP and water was inversely correlated with drug uptake. The MD simulation method provides a reasonable approximation of drug uptake that will be useful in developing polymer-based drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c

Similar content being viewed by others

Notes

  1. The modeling study reported here is novel and such techniques have not been exploited fully. The polymers built are also reasonably large (6–10 mers)

Abbreviations

MD:

Molecular dynamics

MM:

Molecular mechanics

IE:

Interaction energy

TE:

Total energy

Doxo:

Doxorubicin

Glic:

Gliclazide

Sily:

Silymarin

NaA:

Sodium alginate

Alg:

Alginic acid

Gant:

Gantrez

Chit:

Chitosan

EL100:

Eudragit L100

ERSPO:

Eudragit RSPO

DDS:

Drug delivery system

NP:

Nanoparticles

GIT:

Gastro intestinal tract

EM:

Energy minimization

RMSD:

Root mean square deviation

References

  1. Duncan R (2003) The drawing era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  Google Scholar 

  2. Poupaerta JH, Couvreur P (2003) A computationally derived structural model of doxorubicin interacting with oligomeric polyalkylcyanoacrylate in nanoparticles. J Control Release 92:19–26

    Article  Google Scholar 

  3. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  Google Scholar 

  4. Kabanov AV, Chekhonin VP, Alakhov VY, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES, Kabanov VA (1989) Enhancement of the polycation-mediated DNA uptake and cell transfection with Pluronic P85 block copolymer. FEBS Lett 258:343

    Article  CAS  Google Scholar 

  5. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood-brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    Article  CAS  Google Scholar 

  6. Yang L, Alexandridis P (2000) Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr Opin Colloid Interface Sci 5:132–143

    Article  CAS  Google Scholar 

  7. Bu H, Kjøniksen AL, Knudsen KD, Nyströma B (2007) Characterization of interactions in aqueous mixtures of hydrophobically modified alginate and different types of surfactant. Colloids Surf A 293:105–113

    Article  CAS  Google Scholar 

  8. Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm 180:185–193

    Article  CAS  Google Scholar 

  9. Yasukawa TMD, Kimura H, Tabata Y, Ogura Y (2001) Biodegradable scleral plugs for vitreoretinal drug delivery. Adv Drug Deliv Rev 52:25–36

    Article  CAS  Google Scholar 

  10. Gomez S, Carlos C, Luquin E, San Roman B, Espuelas S, Sanz ML, Ferrer M, Irachel JM (2001) New adjuvant for immunotherapy: Gantrez® AN nanoparticles. J Allergy Clin Immunol 115:2, Abstracts S223

    Google Scholar 

  11. Weiss G, Knoch A, Laicher A, Stanislaus F, Daniels R (1993) Microencapsulation of ibuprofen by a coacervation process using Eudragit L100-55 as an enteric polymer. Drug Dev Ind Pharm 19:2751–2764

    Article  CAS  Google Scholar 

  12. Song Y, Guallar V, Baker NA (2005) Molecular dynamics simulations of salicylate effects on the micro- and mesoscopic properties of a dipalmitoyl-phosphatidylcholine bilayer. Biochemistry 44:13425–13438

    Article  CAS  Google Scholar 

  13. Heurtault B, Saulnier P, Pech B, Proust J, Benoit J (2003) Physicochemical stability of colloidal lipid particles. Biomaterials 24:4283–4300

    Article  CAS  Google Scholar 

  14. Bourrel M, Schechter RS (1988) Microemulsions and related systems; formulation, solvency and physical properties. J Dispersion Sci Technol 11:431–432

    Google Scholar 

  15. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880

    Article  CAS  Google Scholar 

  16. Devarajan PV, Sonavane GS, Doble M (2005) Computer-aided molecular modeling: a predictive approach in the design of nanoparticulate drug delivery system. J Biomed Nanotechnol 1:1–9

    Article  Google Scholar 

  17. Xinhuai Z (2006) Three leading molecular dynamics simulation packages. SVU/Academic Computing, Computer Centre, National University of Singapore

  18. Haddish-Berhane N, Nyquist C, Haghighi K, Corvalan C, Keshavarzian A, Campanella O, Rickus J, Farhadi A (2006) A multi-scale stochastic drug release model for polymer-coated targeted drug delivery systems. J Control Release 110:314–322

    Article  CAS  Google Scholar 

  19. Heun G, Lambov N, Groning R (1998) Experimental and molecular modeling studies on interactions between drugs and Eudragit® RL/RS resins in aqueous environment. Pharm Acta Helv 73:57–62

    CAS  Google Scholar 

  20. Haznedar S, Dortunç B (2004) Preparation and invitro evaluation of Eudragit microspheres containing acetazolamide. Int J Pharm 269:131–140

    Article  CAS  Google Scholar 

  21. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  22. Van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2005) Gromacs User Manual version 4.0. www.gromacs.org

  23. Kaushik Ramakrishanan S, Krishna V, Kumar SV, Lakshmi BS, Anishetty S, Gautham P (2008) Molecular dynamics simulation of lipases. Int J Integr Biol 2:204–213

    Google Scholar 

  24. Zhang J, Lou J, Ilias S, Krishnamachari P, Yan J (2008) Thermal properties of poly(lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polym J 49:2381–2386

    Article  CAS  Google Scholar 

  25. Stone JE (2007) VMD User's Guide Version 1.8.6, Theoretical and Computational Biophysics Group1 University of Illinois and Beckman Institute 405N. Mathews Urbana, IL 61801, April 3. http://www.ks.uiuc.edu/Research/vmd

  26. Elmer SP, Park S, Pande VS (2005) Foldamer dynamics expressed via Markov state models. I. Explicit solvent molecular-dynamics simulations in acetonitrile, chloroform, methanol, and water. J Chem Phys 123:114902

    Article  Google Scholar 

  27. Zhou R (2003) Free energy landscape of protein folding in water: explicit vs implicit solvent. Proteins 53:148–161

    Google Scholar 

  28. Twaites B, de las Heras Alarcón C, Alexander C (2004) Synthetic polymers as drugs and therapeutics. J Mater Sci 15:441–455

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Doble.

Additional information

*  Data obtained from our previous work [16]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subashini, M., Devarajan, P.V., Sonavane, G.S. et al. Molecular dynamics simulation of drug uptake by polymer. J Mol Model 17, 1141–1147 (2011). https://doi.org/10.1007/s00894-010-0811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0811-8

Keywords

Navigation