Skip to main content
Log in

Modeling the human intestinal Mucin (MUC2) C-terminal cystine knot dimer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Intestinal mucus, a viscous secretion that lines the mucosa, is believed to be a barrier to absorption of many therapeutic compounds and carriers, and is known to play an important physiological role in controlling pathogen invasion. Nevertheless, there is as yet no clear understanding of the barrier properties of mucus, such as the nature of the molecular interactions between drug molecules and mucus components as well as those that govern gel formation. Secretory mucins, large and complex glycoprotein molecules, are the principal determinants of the viscoelastic properties of intestinal mucus. Despite the important role that mucins play in controlling transport and in diseases such as cystic fibrosis, their structures remain poorly characterized. The major intestinal secretory mucin gene, MUC2, has been identified and fully sequenced. The present study was undertaken to determine a detailed structure of the cysteine-rich region within the C-terminal end of human intestinal mucin (MUC2) via homology modeling, and explore possible configurations of a dimer of this cysteine-rich region, which may play an important role in governing mucus gel formation. Based on sequence–structure alignments and three-dimensional modeling, a cystine knot tertiary structure homologous to that of human chorionic gonadotropin (HCG) is predicted at the C-terminus of MUC2. Dimers of this C-terminal cystine knot (CTCK) were modeled using sequence alignment based on HCG and TGF-beta, followed by molecular dynamics and simulated annealing. Results support the formation of a cystine knot dimer with a structure analogous to that of HCG.

Homodimer model of human intestinal mucin (MUC2) in ribbon presentation with the chains colored red and blue. Human chorionic gonadotropin (HCG) CysX model based on the 3-D structure of (1HCN) with an inter-chain disulfide bond between Cys54 of each chain

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. BioMedCAChe, Version 6.1.12 (2005); BioSciences Group, Fujitsu Computer Systems, Corp., 15244 NW Greenbrier Parkway, Beaverton, Oregon, 97006

References

  1. Sakata T, Engelhardt WV (1981) Luminal mucin in the large intestine of mice, rats and guinea pigs. Cell Tissue Res 219:629–635

    CAS  Google Scholar 

  2. Rozee KR, Cooper D, Lam K, Costertom JW (1982) Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl Environ Microbiol 43:1451–1463

    CAS  Google Scholar 

  3. Thomson AB, Dietschy JM (1977) Derivation of the kinetics that describe the effects of unstirred water layers on the kinetic parameters of active transport processes in the intestine. J Theor Biol 64:277–294

    Article  CAS  Google Scholar 

  4. Westergaard H, Dietschy JM (1974) Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest 174:718–732

    Article  Google Scholar 

  5. Smithson KW, Millar DB, Jacobs LR, Gray G (1981) Intestinal diffusional barrier: unstrirred water layer or membrane surface water coat? Science 214:1241–1244

    Article  CAS  Google Scholar 

  6. Hughes DRL (1988) The influence of intestinal mucus on drug absorption. PhD thesis, Brighton Polytechnic, Brighton

  7. Desai MA, Vadgama P (1991) Dependence of hydrochloric acid diffusion through gastric mucus: correlation with diffusion through a water layer using a membrane mounted glass pH electrode. Analyst 116:463–467

    Article  Google Scholar 

  8. Neutra MR, Forstner JF (1987) Gastrointestinal mucus: synthesis, secretion and function. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Pss, New York

    Google Scholar 

  9. Allen A (1983) Mucus—a protective secretion of complexity. Trends Biochem Sci 8:169–173

    Article  CAS  Google Scholar 

  10. Roussel P, Lamblin G, Lhermitte M, Houdret N, Lafitte JJ, Perini JM, Klein A, Scharfman A (1988) The complexity of mucins. Biochimie 70:1471–1482

    Article  CAS  Google Scholar 

  11. Hansson GC, Sheehan JK, Carlstedt I (1988) Only trace amounts of fatty acids are found in pure mucus glycoproteins. Arch Biochem Biophys 266:197–200

    Article  CAS  Google Scholar 

  12. Filipe MI (1979) Mucins in the human gastrointestinal epithelium: a review. Invest Cell Pathol 2:195–216

    CAS  Google Scholar 

  13. Khanvilkar K, Donovan MD, Flanagan DR (2001) Drug transfer through mucus. Adv Drug Deliv Rev 48:173–193

    Article  CAS  Google Scholar 

  14. Bansil R, Stanley E, LaMont JT (1995) Mucin biophysics. Annu Rev Physiol 57:635–657

    Article  CAS  Google Scholar 

  15. Gum JR, Hicks JW, Toribara NW (1992) The human muc2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem 267:21375–21383

    CAS  Google Scholar 

  16. Gum JR Jr, Hicks JW, Toribara NW, Siddiki B, Kim YS (1994) Molecular cloning of human intestinal mucin (muc2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem 269:2440–2446

    CAS  Google Scholar 

  17. Gendler SJ, Spicer AP (1995) Epithelial mucin genes. Annu Rev Physiol 57:607–634

    Article  CAS  Google Scholar 

  18. Allen A, Hutton DA, Pearson JP (1998) The muc2 gene product: a human intestinal mucin. Int J Biochem Cell Biol 30:797–801

    Article  CAS  Google Scholar 

  19. Toribara NW, Gum JR Jr, Culhane PJ, Lagace RE, Hicks JW, Petersen GM, Kim YS (1991) Muc-2 human small intestinal mucin gene structure. Repeated arrays and polymorphism. J Clin Invest 88:1005–1013

    Article  CAS  Google Scholar 

  20. Gum JR, Byrd JC, Hicks JC, Toribara NW, Lamport DTA, Kim YS (1989) Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem 264:6480–6487

    CAS  Google Scholar 

  21. MacAdam A (1993) The effect of gastro-intestinal mucus on drug absorption. Adv Drug Deliv Rev 11:201–220

    Article  CAS  Google Scholar 

  22. Widdicombe JG (1997) Airway liquid: a barrier to drug diffusion? Eur Respir J 10:2194–2197

    Article  CAS  Google Scholar 

  23. Yakubov GE, Papagiannopoulos A, Rat E, Easton RL, Waigh TA (2007) Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin. Biomacromolecules 8:3467–3477. doi:10.1021/bm700607w

    Article  CAS  Google Scholar 

  24. Brunelli R, Papi M, Arcovito G, Bompiani A, Castagnola M, Parasassi T, Sampaolese B, Vincenzoni F, De Spirito M (2007) Globular structure of human ovulatory cervical mucus. FASEB J 21:3872–3876. doi:101096/fj.07-8189com

    Article  CAS  Google Scholar 

  25. Di Cola E, Yakubov GE, Waigh TA (2008) Double-globular structure of porcine stomach mucin: a small-angle X-ray scattering study. Biomacromolecules 9:3216–3222. doi:10.1021/bm800799u

    Article  Google Scholar 

  26. Jensen PH, Kolarich D, Packer NH(2010) Mucin-type O-glycosylation—putting the pieces together. FEBS J 277:81–94. doi:10.1111/j.1742-4658.2009.07429.x

    Google Scholar 

  27. Uray K, Kajtár J, Vass E, Price MR, Hollósi M, Hudecz F (1999) Effect of solution conformation on antibody recognition of a protein core epitope from gastrointestinal mucin (muc2). Arch Biochem Biophys 361:65–74

    Article  CAS  Google Scholar 

  28. Uray K, Price MR, Majer Z, Vass E, Hollosi M, Hudecz F (2003) Indentification and solution conformation of multiple epitopes recognized by a muc2 mucin-specific monoclonal antibody. Arch Biochem Biophys 410:254–260

    Article  CAS  Google Scholar 

  29. Daopin S, Piez KA, Ogawa Y, Davies DR (1992) Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science 257:369–373

    Article  CAS  Google Scholar 

  30. Schlunegger MP, Grutter MG (1992) An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth factor-beta 2. Nature 358:430–434

    Article  CAS  Google Scholar 

  31. Vitt US, Hsu SY, Hsueh JW (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 15:681–694

    Article  CAS  Google Scholar 

  32. McDonald NQ, Hendrickson WA (1993) A structural superfamily of growth factors containing a cystine knot motif. Cell 73:421–424

    Article  CAS  Google Scholar 

  33. Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291

    Article  CAS  Google Scholar 

  34. Wu H, Lustbader JW, Liu Y, Canfield RE, Hendrickson WA (1994) Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2:545–558

    Article  CAS  Google Scholar 

  35. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, Morgan FJ, Isaacs NW (1994) Crystal structure of human chorionic gonadotropin. Nature 369:455–461

    Article  CAS  Google Scholar 

  36. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  Google Scholar 

  37. Wozney JM, Rosen V (1998) Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop 346:26–37

    Google Scholar 

  38. Griffith DL, Keck PC, Sampath TK, Rueger DC, Carlson WD (1996) Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci USA 93:878–883

    Article  CAS  Google Scholar 

  39. Katsumi A, Tuley EA, Bodo I, Sadler JE (2000) Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem 275:25585–25594

    Article  CAS  Google Scholar 

  40. Meitinger T, Meindl A, Bork P, Rost B, Sandler C, Haasemann M, Murken J (1993) Molecular modeling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet 5:376–380

    Article  CAS  Google Scholar 

  41. Stanley E, Biben C, Kotecha S, Fabri L, Tajbakhsh S, Wang CC, Hatzistavrou T, Roberts B, Drinkwater C, Lah M, Buckingham M, Hilton D, Nash A, Mohun T, Harvey RP (1998) DAN is a secreted glycoprotein related to Xenopus cerberus. Mech Dev 77:173–184

    Article  CAS  Google Scholar 

  42. Tamaoki H, Kobayashi Y, Nishimura S, Ohkubo T, Kyogoku Y, Nakajima K, Kumagaye S, Kimura T, Sakakibara S (1991) Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. Protein Eng 4:506–518

    Article  Google Scholar 

  43. Kobayashi Y, Takashima H, Tamaoki H, Kyogoku Y, Lambert P, Kuroda H, Chino N, Watanabe TX, Kimura T, Sakakibara S (1991) The cysteine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Biopolymers 31:1213–1220

    Article  CAS  Google Scholar 

  44. Tamaoki H, Miura R, Kusunoki M, Kyogoku Y, Kobayashi Y, Moroder L (1998) Folding motifs induced and stabilized by distinct cysteine frameworks. Protein Eng 11:649–659

    Article  CAS  Google Scholar 

  45. Isaacs NW (1995) Cystine knots. Curr Opin Struct Biol 5:391–395

    Article  CAS  Google Scholar 

  46. Prestrelski SJ, Arakawa T, Duker K, Kenney WC, Narhi LO (1994) The conformational stability of a non-covalent dimer of a platelet-derived growth factor-B mutant lacking the two cysteines involved in interchain disulfide bonds. Int J Pept Protein Res 44:357–363

    Article  CAS  Google Scholar 

  47. Hui JO, Woo G, Chow DT, Katta V, Osslund T, Haniu M (1999) The intermolecular disulfide bridge of human glial cell line-derived neurotrophic factor: its selective reduction and biological activity of the modified protein. J Protein Chem 18:585–593

    Article  CAS  Google Scholar 

  48. Bell SL, Xu G, Forstner JF (2001) Role of the cystine-knot motif at the c-terminus of rat mucin protein MUC2 in dimer formation and secretion. Biochem J 357:203–209

    Article  CAS  Google Scholar 

  49. Scheufler C, Sebald W, Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution. J Mol Biol 287:103–115

    Article  CAS  Google Scholar 

  50. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) Expasy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  Google Scholar 

  51. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  52. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  53. Notredame C, Higgins D, Heringa J (2000) T-coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  54. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  55. Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  Google Scholar 

  56. Guex N, Peitsch MC (1997) Swiss-model and the Swiss-pdbviewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  57. Van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Krueger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulations: the GROMOS96 manual and user guide. Hochschulverlag, Zurich

    Google Scholar 

  58. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152

    Article  CAS  Google Scholar 

  59. Laskowski RA, Chistyakov VV, Thornton JM (2005) Pdbsum more: New summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res 33:D266–D268

    Article  CAS  Google Scholar 

  60. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  Google Scholar 

  61. Eisenberg D, Luthy R, Bowie JU (1997) Verify3d: Assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  62. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  63. Holm L, Park J (2000) Dalilite workbench for protein structure comparison. Bioinformatics 16:566–567

    Article  CAS  Google Scholar 

  64. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  65. Harris DC, Machin KJ, Evin GM, Morgan FJ, Isaacs NW (1989) Preliminary X-ray diffraction analysis of human chorionic gonadotropin. J Biol Chem 262:6705–6706

    Google Scholar 

  66. Pierce J, Parsons T (1981) Glycoprotein hormones: structure and function. Annu Rev Biochem 50:465–495

    Article  CAS  Google Scholar 

  67. Murray-Rust J, McDonald NQ, Blundell TL, Hosang M, Oefner C, Winkler FK, Bradshaw RA (1993) Topological similarities in the TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1:153–159

    Article  CAS  Google Scholar 

  68. Butler SA, Laidler P, Porter JR, Kicman AT, Chard T, Cowan DA, Iles RK (1999) The beta-subunit of human chorionic gonadotrophin exists as a homodimer. J Mol Endocrinol 22:185–192

    Article  CAS  Google Scholar 

  69. McDonald NQ, Lapatto R, Rust JM, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-Å resolution crystal structure of nerve growth factor. Nature 354:411–414

    Article  CAS  Google Scholar 

  70. Oefner C, D’Arcy A, Winkler FK, Eggimann B, Hosang M (1992) Crystal structure of human platelet-derived growth factor BB. EMBO J 11:3921–3926

    CAS  Google Scholar 

  71. Kim YS, Gum JR Jr (1995) Diversity of mucin genes, structure, function and expression. Gastroenterology 109:999–1001

    Article  CAS  Google Scholar 

  72. Axelsson MA, Asker N, Hansson GC (1998) O-Glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain non-reducible intermolecular bonds. J Biol Chem 273:18864–18870

    Article  CAS  Google Scholar 

  73. Perez-Villar J, Eckhardt AE, DeLuca A, Hill RL (1998) Porcine submaxillary mucins forms disulfide-linked multimers through its amino acid-terminal D-domains. J Biol Chem 273:14442–14449

    Article  Google Scholar 

  74. Lidell ME, Moncada DM, Chadee K, Hansson GC (2006) Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective mucus gel. Proc Natl Acad Sci USA 103:9298–9303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. Carrier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

ANOLEA [58] method assessing the atomic mean force potential. Negative energy values (green) represent a favorable environment. whereas positive values (red) represent an unfavorable environment for each amino acid. a 3D model of the C-terminus of MUC2, b HCG-B (GIF 27 kb)

High resolution image file (TIFF 27171 kb)

Supplementary Fig. 2

Ramachandran plots generated by the PROCHECK [59] program displaying psi (ψ) and phi (φ) dihedral angles of each residue in the protein structure to assess the “stereochemical quality” of a structure. Red Conformations of ψ and φ that have no steric clashes; white sterically disallowed for all amino acids except glycine (represented as triangles in both plots) a 3D model of the C-terminus of MUC2, b HCG-B (GIF 39 kb)

High resolution image file (TIFF 49024 kb)

Supplementary Fig. 3

Ribbon presentation of the two dimer models based on the 3D structure of human chorionic gonadotropin (PDB ID: 1HCN). HCG CysX is colored yellow and HCG noCysX is colored blue (GIF 65 kb)

High resolution image file (TIFF 13584 kb)

Supplementary Fig. 4

All three MUC2 dimer models are represented in Corey-Pauling-Koltun (CPK) representation. a HCG CysX, b HCG noCysX, c TGFβ. Hydrophobic residues are colored grey and all other residues are colored green (GIF 383 kb)

High resolution image file (TIFF 73063 kb)

ESM Tables

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadasivan, V.D., Narpala, S.R., Budil, D.E. et al. Modeling the human intestinal Mucin (MUC2) C-terminal cystine knot dimer. J Mol Model 17, 2953–2963 (2011). https://doi.org/10.1007/s00894-010-0932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0932-0

Keywords

Navigation