Skip to main content
Log in

Computational and experimental studies of the electronic excitation spectra of EDTA and DTPA substituted tetraphenylporphyrins and their Lu complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ethylendiaminetetraacetic acid (EDTA) substituted and diethylenetriaminopentaacetic acid (DTPA) substituted aminated free-base tetraphenylporphyrins (H2ATPP) and the corresponding lutetium(III) complexes have been studied computationally at the density functional theory (DFT) and second-order algebraic diagrammatic construction (ADC(2)) levels using triple-ξ basis sets augmented with polarization functions. The molecular structures were optimized using Becke's three-parameter hybrid functional (B3LYP). The electronic excitation spectra in the range of 400–700 nm were calculated using the ADC(2) and the linear-response time-dependent DFT methods. The calculated spectra are compared to those measured in ethanol solution. The calculated excitation energies agree well with those deduced from the experimental spectra. The excitation energies for the Qx band calculated at the B3LYP and ADC(2) level are 0.20-0.25 eV larger than the experimental values. The excitation energies for the Qy band calculated at the B3LYP level are 0.10-0.20 eV smaller than the ADC(2) ones and are thus in good agreement with experiment. The calculated excitation energies corresponding to the Bx and By bands are 0.10-0.30 eV larger than the experimental values. The excitation energies of the Bx and By bands calculated at the B3LYP level are in somewhat better agreement with experiment than the ADC(2) ones. The calculated and measured band strengths largely agree.

The ground-state molecular structures of H2TPP-EDTA, H2ATPP-DTPA, H2ATPPLuEDTA and H2ATPP-LuDTPA optimized at the B3LYP/TZVP level of theory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Winpenny REP (1998) The structures and magnetic properties of complexes containing 3d- and 4f-metals. Chem Soc Rev 27:447–452

    Article  CAS  Google Scholar 

  2. Send R, Sundholm D (2007) Coupled-cluster studies of the lowest excited states of the 11-cis-retinal chromophore. Phys Chem Chem Phys 9:2862–2867

    Article  CAS  Google Scholar 

  3. Köhn A, Hättig C (2004) On the nature of the low-lying singlet states of 4-(dimethyl)aminobenzonitrile. J Am Chem Soc 126:7399–7410

    Article  Google Scholar 

  4. Lehtonen O, Sundholm D (2006) Coupled-cluster studies of the electronic excitation spectra of silanes. J Chem Phys 125:144314

    Article  Google Scholar 

  5. Sobolewski AL, Domcke W, Hättig C (2006) Photophysics of organic photostabilizers. Ab initio study of the excited-state deactivation mechanisms of 2-(2'-hydroxyphenyl)benzotriazole. J Phys Chem A 110:6301–6306

    Article  CAS  Google Scholar 

  6. Hellweg A, Hättig C, Merke I, Stahl W (2006) Microwave and theoretical investigation of the internal rotation in m-cresol. J Chem Phys 124:204305

    Article  Google Scholar 

  7. Schirmer J (1982) Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 26:2395–2416

    Article  CAS  Google Scholar 

  8. Trofimov AB, Schirmer (1995) An efficient polarization propagator approach to valence electron excitation spectra. J J Phys B 28:2299–2325

    Article  CAS  Google Scholar 

  9. Hättig C (2005) Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv Quantum Chem 50:37–60

    Article  Google Scholar 

  10. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  11. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433–7447

    Article  CAS  Google Scholar 

  12. Hada M, Yokono H, Nakatsuji H (1987) Frozen core and virtual orbitals in the MCSCF theory. Chem Phys Lett 141:339–345

    Article  CAS  Google Scholar 

  13. Adamowicz L, Bartlett RJ *1987) Optimized virtual orbital space for high-level correlated calculations. J Chem Phys 86:6314–6324

    Google Scholar 

  14. Sosa C, Geertsen J, Trucks GW, Bartlett RJ (1989) Selection of the reduced virtual space for correlated calculations. An application to the energy and dipole moment of Water. Chem Phys Lett 159:148–154

    Article  CAS  Google Scholar 

  15. Taube AG, Bartlett RJ (2005) Frozen Natural orbitals: systematic basis set truncation for coupled cluster theory. Collect Czech Chem Commun 70:837–850

    Article  CAS  Google Scholar 

  16. Neogrady P, Pitonak M, Urban M (2005) Optimized virtual orbitals for correlated calculations: an alternative approach. Mol Phys 103:2141–2157

    Article  CAS  Google Scholar 

  17. Köhn A, Olsen J (2006) Coupled-cluster with active space selected higher amplitudes: performance of seminatural orbitals for ground and excited state calculations. J Chem Phys 125:174110

    Article  Google Scholar 

  18. Piacenza M, Della Sala F, Fabiano E, Maiolo T, Gigli (2007) Torsional effects on excitation energies of thiophene derivatives induced by -substituents: comparison between time-dependent density functional theory and approximated coupled cluster approaches. G J Comput Chem 29:451–457

    Article  Google Scholar 

  19. Send R, Kaila VRI, Sundholm D (2011) Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems. J Chem Phys 134:214114

    Article  Google Scholar 

  20. Pabst M, Sundholm D, Köhn A (2012) Ab initio studies of triplet-state properties for organic semiconductor molecules. J Phys Chem C (submitted)

  21. Semenishin N, Rusakova N, Mazepa A, Korovin Y (2009) Synthesis of ditopic porphyrins and lanthanide complexes on their basis: luminescent features. Macroheterocycles 2(1):57–59

    Google Scholar 

  22. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  23. Evans R, Douglas P (2009) Design and color response of colorimetric multilumophore oxygen sensors. Appl Mater Interfaces 1:1023–1030

    Article  CAS  Google Scholar 

  24. Evans R, Douglas P, Winscom C (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250:2093–2126

    Article  CAS  Google Scholar 

  25. Ermolina EG, Kuznetsova RT, Gadirov RM, Maier GV, Semenishin NN, Rusakova NV, Korovin YV (2010) Luminescence of the free bases of chelatee substituted tetraphenylporphyrin derivatives and their complexes with lutetium. High Energy Chem 44:387–424

    Article  CAS  Google Scholar 

  26. Valiev RR, Ermolina EG, KaluginaYN KRT, Cherepanov VN (2012) Electronic absorption spectrum of monoamine tetraphenylporphyrin with the complexon of ethylenediaminetetraacetic acid as substitute. Spectrochim Acta A. doi:10.1016/j.saa.2011.10.075

  27. Valiev RR, Ermolina EG, Kuznetsova, RT, Cherepanov VN (2012) Electronic absorption spectrum of monoamine tetraphenylporphyrin with the complexon of diethylentriamenepentaacetatic acid as substitute. Russian J Phys 54:1160–1165

    Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system TURBOMOLE. Chem Phys Lett 162:165–169, current version: see http://www.turbomole.com.

    Google Scholar 

  31. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  32. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  33. Hättig C, Köhn A (2002) Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation. J Chem Phys 117:6939–6952

    Article  Google Scholar 

  34. Hättig C, Weigend FJ (2000) CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. Chem Phys 113:5154–5161

    Google Scholar 

  35. Ladd MFC, Povey DC (1973) Crystallographic and spectroscopic studies on ethylenediaminetetraacetic acid (edta). J Chem Cryst 3:15–23

    CAS  Google Scholar 

  36. Shkolnikova LM, Polyanchuk GV, Dyatlova NM, Polyakova IA (1984) An X-ray study of organic ligands of complexon type. J Struct Chem 25:445–448

    Article  Google Scholar 

  37. Aime S, Benetolloa F, Bombieri G, Colla S, Fasano M, Paoletti S (1997) Non-ionic Ln(III) chelates as MRI contrast agents: synthesis, characterisation and 1H NMR relaxometric investigations of bis(benzylamide)diethylenetriaminepentaacetic acid Lu(III) and Gd(III) complexes. Inorg Chim Acta 254:63–70

    Article  CAS  Google Scholar 

  38. Silvers SJ, Tulinsky A (1967) The crystal and molecular structure of triclinic tetraphenylporphyrin. J Am Chem Soc 89:3331–3337

    Article  CAS  Google Scholar 

  39. Gassman PG, Ghosh A, Almlöf J (1992) Electronic effects of peripheral substituents in porphyrins: x-ray photoelectron spectroscopy and ab initio self-consistent field calculations. J Am Chem Soc 114:9990–10000

    Article  CAS  Google Scholar 

  40. McGlynn SP, Azumi T, Kinoshita M (1969) Molecular spectroscopy of the triplet state.Prentice-Hall Englewood Cliffs, NJ

  41. Solov’ev KN, Gurinovich GP, Sevchenko AN (1963) The spectroscopy of the porphyrins. Sov Phys Usp 6:67–105

    Article  Google Scholar 

  42. Baerends EJ, Ricciardi G, Rosa A, van Gisbergen SJA (2002) A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coord Chem Rev 2002:230

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Academy of Finland through its Centers of Excellence Program 2006–2011. The calculations were performed at the CSC-IT Center for Science, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid R. Valiev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 914 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiev, R.R., Ermolina, E.G., Kuznetsova, R.T. et al. Computational and experimental studies of the electronic excitation spectra of EDTA and DTPA substituted tetraphenylporphyrins and their Lu complexes. J Mol Model 19, 4631–4637 (2013). https://doi.org/10.1007/s00894-012-1400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1400-9

Keywords

Navigation