Skip to main content
Log in

Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n = 0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui function. A classification of the P-O bonds formed in all structures was done according to the coordination number in each P and O atoms. It was found that there are five P-O bond types and these are distributed among the five phosphorus oxides structures. Results showed that there is good agreement among the evaluated properties (length, bond order, density at the critical point, and disynaptic population) and each P-O bond type. It was found that regardless of the structure in which a P-O bond type is present the topological and geometric properties do not have a significant variation. The topological parameters electron density and Laplacian of electron density show excellent linear correlation with the average length of P-O bond in each bond type for each structure. From the Fukui function analysis it was possible to predict that from P4O6 until P4O8 the most reactive regions are basins over the P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salvadó MA, Pertierra P (2008) Theoretical study of P2O5 polymorphs at high pressure: hexacoordinated phosphorus. Inorg Chem 47(11):4884–4890

    Article  Google Scholar 

  2. Engels B, Soares Valentim AR, Peyerimhoff SD (2001) About the chemistry of phosphorus suboxides. Angew Chem Int Ed 40(2):378–381

    Article  CAS  Google Scholar 

  3. Dimitrov A, Ziemer B, Hunnius W-D, Meisel M (2003) The first ozonide of a phosphorus oxide—preparation, characterization, and structure of P4O18. Angew Chem Int Ed 42(22):2484–2486

    Article  CAS  Google Scholar 

  4. Klapötke TM (2003) P4O18—the first binary phosphorus oxide ozonide. Angew Chem Int Ed 42(30):3461–3462

    Article  Google Scholar 

  5. Carbonnière P, Pouchan C (2008) Vibrational spectra for P4O6 and P4O10 systems: theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem Phys Lett 462(4–6):169–172

    Article  Google Scholar 

  6. Mielke Z, Andrews L (1989) Infrared spectra of phosphorus oxides (P4O6, P4O7, P4O8, P4O9 and P4O10) in solid argon. J Phys Chem 93(8):2971–2976

    Article  CAS  Google Scholar 

  7. Jansen M, Moebs M (1984) Structural investigations on solid tetraphosphorus hexaoxide. Inorg Chem 23(26):4486–4488

    Article  CAS  Google Scholar 

  8. Beattie IR, Ogden JS, Price DD (1978) The characterization of molecular vanadium oxide (V4O10), an analog of phosphorus oxide (P4O10). Inorg Chem 17(11):3296–3297

    Article  CAS  Google Scholar 

  9. Sharma BD (1987) Phosphorus(V) oxides. Inorg Chem 26(3):454–455

    Article  CAS  Google Scholar 

  10. Valentim ARS, Engels B, Peyerimhoff SD, Clade J, Jansen M (1998) A comparative study of the bonding character in the P4On (n = 6–10) series by means of a vibrational analysis. J Phys Chem A 102(21):3690–3696

    Article  CAS  Google Scholar 

  11. Mowrey RC, Williams BA, Douglass CH (1997) Vibrational analysis of P4O6 and P4O10. J Phys Chem A 101(32):5748–5752

    Article  CAS  Google Scholar 

  12. Lohr LL (1990) An ab initio characterization of the gaseous diphosphorus oxides P2Ox (x = 1–5). J Phys Chem 94(5):1807–1811

    Article  CAS  Google Scholar 

  13. Moussaoui Y, Ouamerali O, De Maré GR (2003) Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: comparison of theoretical and experimental data. Int Rev Phys Chem 22(4):641–675

    Article  CAS  Google Scholar 

  14. Butler JE, Kawaguchi K, Hirota E (1983) Infrared diode laser spectroscopy of the PO radical. J Mol Spectrosc 101(1):161–166

    Article  CAS  Google Scholar 

  15. Kanata H, Yamamoto S, Saito S (1988) The dipole moment of the PO radical determined by microwave spectroscopy. J Mol Spectrosc 131(1):89–95

    Article  CAS  Google Scholar 

  16. Dyke JM, Morris A, Ridha A (1982) Study of the ground state of PO + using photoelectron spectroscopy. J Chem Soc, Faraday Trans 78(12):2077–2082

    Article  CAS  Google Scholar 

  17. Zittel PF, Lineberger WC (1976) Laser photoelectron spectrometry of PO-, PH-, and PH2 -. J Chem Phys 65(4):1236–1243

    Article  CAS  Google Scholar 

  18. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod Package

  19. Flkiger P, Lthi HP, Portmann S, Weber J (2008) MOLEKEL 5.3. Molekel homepage. http://www.cscs.ch/molekel (accessed 20 April 2010)

  20. Bader R (1990) Atoms in molecules. Oxford University Press, New York, A Quantum Theory

    Google Scholar 

  21. Popelier PLA (1996) MORPHY, a program for an automated "atoms in molecules" analysis. Comput Phys Commun 93:212–240

    Google Scholar 

  22. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  23. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  24. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  25. Gazquez J (2008) Perspectives on density functional theory Of chemical reactivity. J Mex Chem Soc 52(1):3–10

    CAS  Google Scholar 

  26. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863

    Article  CAS  Google Scholar 

  27. Ayers PW, Levy M (2000) Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360

    Article  CAS  Google Scholar 

  28. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  29. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175

    Article  CAS  Google Scholar 

  30. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  31. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303

    Article  CAS  Google Scholar 

  32. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  33. Fuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quantum Chem 107:37–45

    Article  CAS  Google Scholar 

  34. Ayers PW (2006) Can one oxidize an atom by reducing the molecule that contains It? Phys Chem Chem Phys 8:3387–3390

    Article  CAS  Google Scholar 

  35. Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–1151

    Article  CAS  Google Scholar 

  36. Melin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019

    Article  CAS  Google Scholar 

  37. Cardenas C, Ayers PW, Cedillo A (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134(17):174103–174113

    Article  Google Scholar 

  38. Flores-Moreno R (2009) Symmetry conservation in Fukui functions. J Chem Theory Comput 6(1):48–54

    Article  Google Scholar 

  39. Martínez J (2009) Local reactivity descriptors from degenerate frontier molecular orbitals. Chem Phys Lett 478(4–6):310–322

    Article  Google Scholar 

  40. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109(14):3220–3224

    Article  CAS  Google Scholar 

  41. Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6(5):1470–1478

    Article  CAS  Google Scholar 

  42. Osorio E, Ferraro MB, Oña OB, Cardenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum matching of the Fukui functions. J Chem Theory Comput 7(12):3995–4001

    Article  CAS  Google Scholar 

  43. Florez E, Tiznado W, Mondragón F, Fuentealba P (2005) Theoretical study of the interaction of molecular oxygen with copper clusters. J Phys Chem A 109(34):7815–7821

    Article  CAS  Google Scholar 

  44. Tiznado W, Ona OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) Theoretical study of the adsorption of H on Sin clusters, (n = 3–10). J Chem Phys 123(21):214302

    Article  Google Scholar 

  45. Tiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) Theoretical study of the structure and electronic properties of Si3On − and Si6On − (n = 1–6) clusters. Fragmentation and formation patterns. J Chem Theory Comput 5(9):2265–2273

    Article  CAS  Google Scholar 

  46. Kohout M (2011) DGrid 4.6. Radebeul

  47. Popelier PLA (2000) Atoms in molecules. An introduction. Pearson Education, Harlow

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to EPM (Empresas Pública de Medellín)/CIIEN (Centro de Investigación e Innovación en Energía) and COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e innovación) for financing the project 1115-4547-21979, and to the University of Antioquia for the financial support of the “Programa Sostenibilidad 2013-2014”. WT thanks Fondecyt financial support (Grant No 11090431). NA thanks “COLCIENCIAS” and the University of Antioquia for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanor Mondragón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acelas, N.Y., López, D., Mondragón, F. et al. Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4)). J Mol Model 19, 2057–2067 (2013). https://doi.org/10.1007/s00894-012-1633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1633-7

Keywords

Navigation