Skip to main content
Log in

Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0–2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments.

Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akhavan J (2004) The chemistry of explosives. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Ji GF, Xiao HM, Dong HS (2002) High level calculations on structure and properties of crystalline β-HMX. Acta Chim Sinica 60:194–199

    CAS  Google Scholar 

  3. Wang AY, Chen SS, Li LJ, Jin SH, Kong DB (2007) Comparasion of different quantization methods for calculating the structure of β-HMX. Chin J Explos Propell 30:21–25

    Google Scholar 

  4. Xue C, Sun J, Kang B, Liu Y, Liu XF, Song GB, Xue QB (2010) The β→δ phase transition and thermal expansion of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Propell Explos Pyrotech 35:333–338

    Article  CAS  Google Scholar 

  5. Qian W, Zhang CY, Shu YJ, Xiong Y, Zong HH, Zhang WB (2014) Anisotropy of thermal-expansion for β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: quantum chemistry calculation and molecular dynamics simulation. Chin J Chem Phys 27:57–62

    Article  CAS  Google Scholar 

  6. Haycraft JJ, Stevens LL, Eckhardt CJ (2006) Single-crystal, polarized, raman scattering study of the molecular and lattice vibrations for the energetic material cyclotrimethylene trinitramine. J Appl Phys 100:053508

    Article  Google Scholar 

  7. Hudson BS (2001) Inelastic neutron scattering: a tool in molecular vibrational spectroscopy and a test of ab initio methods. J Phys Chem A 105:3949–3960

    Article  CAS  Google Scholar 

  8. Gŕůneis A, Saito R, Kimura T, Canado LG, Pimenta MA, Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS (2002) Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys Rev B 65:155405–155411

    Article  Google Scholar 

  9. Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejóon P (2004) Phonon dispersion in graphite. Phys Rev Lett 92:075501–075504

    Article  CAS  Google Scholar 

  10. Mohr M, Maultzsch J, Dobardic E, Reich S, Milosevic I, Damnjanovic M, Bosak A, Krisch M, Thomsen C (2007) Phonon dispersion of graphite by inelastic x-ray scattering. Phys Rev B 76:035439–035445

    Article  Google Scholar 

  11. Born M, Huang K (2007) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    Google Scholar 

  12. Wang ZX, Guo DR (2000) Introduction to special functions. Peking University Press, Beijing

    Google Scholar 

  13. Dubay O, Kresse G (2003) Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Phys Rev B 67:035401–035413

    Article  Google Scholar 

  14. Wirtz L, Rubio A (2004) The phonon dispersion of graphite revisited. Solid State Commun 131:141–152

    Article  CAS  Google Scholar 

  15. Gonze X, Allan DC, Teter MP (1992) Dielectric tensor, effective charges, and phonons in a-quartz by variational density-functional perturbation theory. Phys Rev Lett 68:3603–3606

    Article  CAS  Google Scholar 

  16. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  CAS  Google Scholar 

  17. Long Y, Chen J (2014) Theoretical study of phonon density of states, thermodynamic properties and phase transitions for HMX. Philos Mag 94:2656–2677

    Article  CAS  Google Scholar 

  18. Ciezak JA, Trevino SF (2005) Theoretical and experimental study of the inelastic neutron scattering spectra of b-5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one. J Mol Struc (THEOCHEM) 732:211–218

    Article  CAS  Google Scholar 

  19. Ciezak JA, Trevino SF (2006) Inelastic neutron scattering spectrum of cyclotrimethylenetrinitramine: a comparison with solid-state electronic structure calculations. J Phys Chem A 110:5149–5155

    Article  CAS  Google Scholar 

  20. Kraczek B, Chung PW (2013) Investigation of direct and indirect phonon-mediated bond excitation in α-RDX. J Chem Phys 138:074505

    Article  CAS  Google Scholar 

  21. Iqbal Z, Bulusu S, Autera JR (1974) Vibrational spectrum of β-cyclotetramethylene tetranitramine and some of its isotropic isomers. J Chem Phys 60:221–230

    Article  CAS  Google Scholar 

  22. Stevens LL, Haycraft JJ, Eckhardt CJ (2005) Single-crystal, polarized raman-scattering study of the molecular and lattice vibrations for the energetic material cyclotetramethylenetetranitramine, β-polymorph (β-HMX). Cryst Growth Des 5:2060

    Article  CAS  Google Scholar 

  23. Du Y (2013) Study on the characteristics of terahertz absorption spectrum for α/β-HMX. Thesis for Master’s degree. China Academy of Engineering Physics, Mianyang

    Google Scholar 

  24. Du Y, Li JM, Zong HH, Yang ZF, Zhang WB (2015) Absorption characteristics and theoretical calculation of terahertz wave for α-HMX. Chin J Energ Mater 23:454–458

    Google Scholar 

  25. Fitch MJ, Leahy-Hoppa MR, Ott EW, Osiander R (2007) Molecular absorption cross-section and absolute absorptivity in the THz frequency range for the explosives TNT, RDX, HMX, and PETN. Chem Phys Lett 443:284–288

    Article  CAS  Google Scholar 

  26. Choi CS, Boutin HP (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Cryst 26:1235–1240

    Article  CAS  Google Scholar 

  27. Segall MD, Lindan PJD, Probert MJ (2002) First-principles simulation: ideas, illustrations, and the CASTEP code. J Phys Condensed Mater 14:2717–2743

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functional. Phys Rev B 59:7413

    Article  Google Scholar 

  30. Montanari B, Harrison NM (2002) Lattice dynamics of TiO2 rutile: influence of gradient corrections in density functional calculations. Chem Phys Lett 364:528–534

    Article  CAS  Google Scholar 

  31. Lee YS (2009) Principles of terahertz science and technology. Springer, New York

    Google Scholar 

  32. Baytos JF (1979) Specific heat and thermal conductivity of explosives, mixtures, and PBX determined experimentally. LA-8034-MS. Los Alamos National Laboratory, Los Alamos

  33. Dobratz BM, Crawford PC (1985) LLNL explosive handbook. UCRL-52997. Lawrence Livermore National Laboratory, Livermore

Download references

Acknowledgement

The authors acknowledge the support of CAEP (China Academy of Engineering Physics) fund (Grant No. 2013A0302013) and technical innovation fund from Institute of Chemical Materials (Grant No.KJCX-201409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Zhang, W., Zong, H. et al. Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study. J Mol Model 22, 9 (2016). https://doi.org/10.1007/s00894-015-2877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2877-9

Keywords

Navigation