Skip to main content
Log in

Structural, energetic, and vibrational properties of the homodimers of the silyl, germyl, and stannyl halides, (MH3X)2 (M = Si, Ge, Sn; X = F, Cl, Br, I)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A number of properties of the homodimers of the three families of molecules MH3X, where M is Si, Ge, and Sn and X is F, Cl, Br, and I are computed. The results are compared with those of a similar study of the homodimers of the methyl halides containing the same four halogen atoms, and some notable differences are observed among related sets of monomer species. The interaction energies, the primary intermolecular geometrical parameters, the changes in the intramolecular bond lengths, and the vibrational data (wavenumber shifts and dimer/monomer infrared intensity ratios) of some of the modes most closely associated with the site of interaction show, for the most part, regular variations as the central atom and the halogen atom are systematically varied. The results are interpreted in terms of the changes in the bonding properties of the monomer molecules as they undergo dimerization.

Interaction energies of the silyl, germyl and stannyl fluoride, chloride, bromide and iodide dimers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ford TA (2012) J Mol Struct 1009:16–22

    CAS  Google Scholar 

  2. Xie Y, Jang JH, King RB, Schaefer III HF (2003) Inorg Chem 42:5219–5230

    CAS  PubMed  Google Scholar 

  3. Ramasami P, Ford TA (2016) J Mol Struct 1126:2–10

    CAS  Google Scholar 

  4. Dailey BP, Mays JM, Townes CH (1949) Phys Rev 76:136–137

    CAS  Google Scholar 

  5. Mays JM, Dailey BP (1952) J Chem Phys 20:1695–1703

    CAS  Google Scholar 

  6. Kewley R, McKinney PM, Robiette AG (1970) J Mol Spectrosc 34:390–398

    CAS  Google Scholar 

  7. Sharbaugh AH, Pritchard BD, Thomas VG, Mays JM, Dailey BP (1950) Phys Rev 79:189

    CAS  Google Scholar 

  8. Griffiths JE, McAfee KB (1961) Proc Chem Soc 456–460

  9. Rhee KH, Wilson MK (1965) J Chem Phys 43:333–343

    CAS  Google Scholar 

  10. Bellama JM, Wandiga SO, Maryott AA (1971) Inorg Nucl Chem Lett 7:71–73

    CAS  Google Scholar 

  11. Krisher LC, Morrison JA, Watson WA (1972) J Chem Phys 57:1357–1358

    CAS  Google Scholar 

  12. Wolf SN, Krisher LC (1972) J Chem Phys 56:1040–1049

    CAS  Google Scholar 

  13. Krisher LC, Wolf SN (1973) J Chem Phys 58:396–398

    CAS  Google Scholar 

  14. Bellama JM, Wandiga SO, Maryott AA (1974) J Chem Soc, Faraday Trans II 70:719–726

    CAS  Google Scholar 

  15. Cradock S, McKean DC, MacKenzie MW (1981) J Mol Struct 74:265–276

    CAS  Google Scholar 

  16. Durig JR, Mohamad AB, Trowell PL, Li YS (1981) J Chem Phys 75:2147–2152

    CAS  Google Scholar 

  17. Cradock S, Smith JG (1983) J Mol Spectrosc 98:502–504

    CAS  Google Scholar 

  18. Cradock S, Smith JG (1983) J Mol Spectrosc 102:184–192

    CAS  Google Scholar 

  19. Krisher LC, Gsell RA, Bellama JM (1971) J Chem Phys 54:2287–2288

    CAS  Google Scholar 

  20. Wolf SN, Krisher LC, Gsell RA (1971) J Chem Phys 54:4605–4611

    CAS  Google Scholar 

  21. Wolf SN, Krisher LC, Gsell RA (1971) J Chem Phys 55:2106–2114

    CAS  Google Scholar 

  22. Monfils A (1951) J Chem Phys 19:138–139

    CAS  Google Scholar 

  23. Monfils A (1953) Compt Rend 236:795

    CAS  Google Scholar 

  24. Andersen FA, Bak B (1954) Acta Chem Scand 8:738–743

    CAS  Google Scholar 

  25. Mayo DW, Opitz HE, Peake JS (1955) J Chem Phys 23:1344–1345

    CAS  Google Scholar 

  26. Newman C, O’Loane JK, Polo SR, Wilson MK (1956) J Chem Phys 25:855–859

    CAS  Google Scholar 

  27. Lord RC, Steese CM (1954) J Chem Phys 22:542–546

    CAS  Google Scholar 

  28. Griffiths JE, Srivastava TN, Onyszchuk M (1962) Can J Chem 40:579–589

    CAS  Google Scholar 

  29. Freeman DE, Rhee KH, Wilson MK (1963) J Chem Phys 39:2908–2922

    CAS  Google Scholar 

  30. Nakagawa NJ, Hasegawa A, Hayashi M (1982) Spectrochim Acta 38A:773–778

    CAS  Google Scholar 

  31. Cradock S, Bürger H, Eujen R, Schulz P (1982) Mol Phys 46:641–649

    CAS  Google Scholar 

  32. McKean DC, Torto I, MacKenzie MW, Morrison AR (1983) Spectrochim Acta 39A:387–398

    CAS  Google Scholar 

  33. Cradock S (1984) Mol Phys 51:697–714

    CAS  Google Scholar 

  34. Lattanzi F, di Lauro C, Henry L, Valentin A, Bürger H (1988) J Mol Spectrosc 127:83–96

    CAS  Google Scholar 

  35. Bürger H, Burczyk K, Eujen R, Rahner A, Cradock S (1983) J Mol Spectrosc 97:266–286

    Google Scholar 

  36. Bürger H, Eujen R, Litz M, Henry L, Valentin A (1988) J Mol Spectrosc 128:98–107

    Google Scholar 

  37. Bürger H, Schulz P, Cradock S (1985) Z Naturforsch 40a:383–385

    Google Scholar 

  38. Bürger H, Eujen R, Cradock S, Henry L, Valentin A (1986) J Mol Spectrosc 116:228–246

    Google Scholar 

  39. Bürger H, Eujen R, Rahner A, Schulz P, Drake JE, Cradock S (1983) Z Naturforsch 38a:740–748

    Google Scholar 

  40. Ogilvie JF, Salares VR, Newlands MJ (1978) Ber Bunsenges Phys Chem 82:105

    Google Scholar 

  41. Isabel RJ, Guillory WA (1971) J Chem Phys 55:1197–1205

    CAS  Google Scholar 

  42. Isabel RJ, Guillory WA (1972) J Chem Phys 57:1116–1123

    CAS  Google Scholar 

  43. Guillory WA, Isabel RJ, Smith GR (1973) J Mol Struct 19:473–491

    CAS  Google Scholar 

  44. Bellama JM, Gsell RA (1971) Inorg Nucl Chem Lett 7:365–368

    CAS  Google Scholar 

  45. Webster JR, Millard MM, Jolly WL (1971) Inorg Chem 10:879–883

    Google Scholar 

  46. Bürger H, Betzel M (1985) Z Naturforsch 40a:989–994

    Google Scholar 

  47. Betzel M, Bürger H, Rahner A (1986) Z Naturforsch 41a:1009–1014

    CAS  Google Scholar 

  48. Bürger H, Betzel M, Schulz P (1987) J Mol Spectrosc 121:218–235

    Google Scholar 

  49. Nagarajan G (1962) Bull Soc Chim Belg 71:226

    CAS  Google Scholar 

  50. Duncan JL (1964) Spectrochim Acta 20:1807–1814

    CAS  Google Scholar 

  51. Pillai MGK, Perumal A (1964) Bull Soc Chim Belg 73:641

    CAS  Google Scholar 

  52. Freeman DE, Wilson MK (1965) Spectrochim Acta 21:1825–1833

    CAS  Google Scholar 

  53. Müller A, Krebs B, Fadini A, Glemser O, Cyvin SJ, Brunvoll J, Cyvin BN, Elvebredd I, Hagen G, Vizi B (1968) Z Naturforsch 23a:1656–1660

    Google Scholar 

  54. Ramaswamy K, Balasubramanian V (1969) Indian. J Phys 43:454–463

    CAS  Google Scholar 

  55. Robiette AG, Cartwright GJ, Hoy AR, Mills IM (1971) Mol Phys 20:541–553

    CAS  Google Scholar 

  56. Krishnamachari SLNG (1955) Indian J Phys 29:147

    CAS  Google Scholar 

  57. Dublish AK, Srivastava BB, Pandey AN (1976) Indian J Pure Appl Phys 14:356

    CAS  Google Scholar 

  58. Balakrishnan R, Ramaswamy K (1979) Indian J Chem 18A:293

    CAS  Google Scholar 

  59. Bunnell J, Crafford BC, Ford TA (1980) J Mol Struct 61:383–396

    CAS  Google Scholar 

  60. Aron J, Bunnell J, Ford TA, Mercau N, Aroca R, Robinson EA (1984) J Mol Struct (THEOCHEM) 110:361–379

    Google Scholar 

  61. Mercau N, Aroca R, Robinson EA, Aron J, Bunnell J, Ford TA (1984) J Comput Chem 5:427–440

    CAS  Google Scholar 

  62. Bunnell J, Ford TA (1986) Spectrochim Acta 42A:543–550

    CAS  Google Scholar 

  63. Weaving JS, Ford TA (1987) J Mol Struct 161:245–264

    CAS  Google Scholar 

  64. Yarandina VN, Sverdlov LM (1969) Sov Phys J 11:138–143

    Google Scholar 

  65. Thirugnanasambandam O, Karunanidhi N (1977) Indian J Phys 51B:357–368

    CAS  Google Scholar 

  66. Rai SN, Subramanian C, Sivakumar P, Rao BK, Ramasamy P (1981) Indian J Pure Appl Phys 19:1215–1216

    CAS  Google Scholar 

  67. Mohan S, Ravikumar KG (1983) Acta Phys Polon A63:77–88

    CAS  Google Scholar 

  68. Bunnell J, Ford TA (1986) Spectrochim Acta 42A:551–556

    CAS  Google Scholar 

  69. Bürger H, Cichon J, Ruoff A (1974) Spectrochim Acta 30A:223–235

    Google Scholar 

  70. Georghiou C, Baker JC, Jones SR (1976) J Mol Spectrosc 63:89–97

    CAS  Google Scholar 

  71. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  72. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Google Scholar 

  73. Dunning Jr TH (1989) J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  74. Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    CAS  Google Scholar 

  75. Woon DE, Dunning Jr TH (1993) J Chem Phys 98:1358–1371

    CAS  Google Scholar 

  76. Peterson KA, Woon DE, Dunning Jr TH (1994) J Chem Phys 100:7410–7415

    CAS  Google Scholar 

  77. Wilson AK, van Mourik T, Dunning Jr TH (1996) J Mol Struct (THEOCHEM) 358:339–349

    Google Scholar 

  78. Schucharat KL, Didier BT, Elsethagen T, Sun L, Gurumoorthy V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052

    Google Scholar 

  79. Liu B, McLean AD (1973) J Chem Phys 59:4557–4558

    CAS  Google Scholar 

  80. Boys SF, Bernardi F (1970) Mol Phys 19:553–556

    CAS  Google Scholar 

  81. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    CAS  Google Scholar 

  82. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    CAS  Google Scholar 

  83. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison. http://www.chem.wisc.edu/~nbo5. Accessed 4 Aug 2010

  84. Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272–295

    Google Scholar 

Download references

Acknowledgments

This work is based on research supported in part by the National Research Foundation (NRF) of South Africa under grant number 2053648. The grant holder (TAF) acknowledges that opinions, findings, and conclusions or recommendations expressed in any publication generated by NRF-supported research are those of the authors and that the NRF accepts no liability in this regard. The authors also acknowledge the University of Mauritius and the University of KwaZulu-Natal for financial assistance, as well as the Centre for High Performance Computing (Cape Town) and the Hippo cluster (University of KwaZulu-Natal) for the use of computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Ford.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Tim Clark 70th Birthday Festschrift

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasami, P., Ford, T.A. Structural, energetic, and vibrational properties of the homodimers of the silyl, germyl, and stannyl halides, (MH3X)2 (M = Si, Ge, Sn; X = F, Cl, Br, I). J Mol Model 25, 44 (2019). https://doi.org/10.1007/s00894-019-3927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3927-5

Keywords

Navigation