Skip to main content
Log in

Solvent effects on host-guest residence time and kinetics: further insights from metadynamics simulation of Toussaintine-A unbiding from chitosan nanoparticle

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Solvents play an important role in host-guest intermolecular interactions. The kinetics and residence time of Toussaintine-A (TouA) unbinding from chitosan was investigated by means of well-tempered metadynamics and thermodynamic integration using two solvents, polar aprotic (DMSO), and polar protic (water). The kinetic rates were found to be strongly dependent on the solvent polarity; hence, the unbinding rate proceeded much faster in DMSO compared to water. DMSO tends to participate less in a chemical reaction by weakening the intermolecular interaction between chitosan and TouA due to lack of acidic hydrogen resulting in a reduction of the transition state. On the other hand, water, which ought to donate hydrogen atoms, sustains a strong interaction and hence large barrier heights. Consequently, this reduces the unbinding rate and increases the residence time. Binding free energy from thermodynamic integration suggests a thermodynamic stable chitosan-TouA complex in water than in DMSO.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data are available on request to the corresponding author.

Code availability

All codes used in this work is as per the published.

References

  1. Abraham M (1974) Solvent effects on transition states and reaction rates. Progress Phys Org Chem, pp 1–87

  2. Fu IW, Markegard CB, Nguyen HD (2014) Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. Langmuir 31(1):315

    Article  Google Scholar 

  3. Papadakis R, Deligkiozi I (2019) In: Solvent effects, IntechOpen

  4. Levy Y, Jortner J, Becker OM (2001) Solvent effects on the energy landscapes and folding kinetics of polyalanine. Proc Natl Acad Sci 98(5):2188

    Article  CAS  Google Scholar 

  5. da Silva GC, Cardozo TM, Amarante GW, Abreu CR, Horta BA (2018) Solvent effects on the decarboxylation of trichloroacetic acid: insights from ab initio molecular dynamics simulations. Phys Chem Chem Phys 20(34):21988

    Article  CAS  Google Scholar 

  6. Sheehan ME, Sharratt PN (1998) Molecular dynamics methodology for the study of the solvent effects on a concentrated diels-alder reaction and the separation of the postreaction mixture. Comput Chem Eng 22:S27

    Article  CAS  Google Scholar 

  7. Slakman BL, West RH (2019) Kinetic solvent effects in organic reactions. J Phys Org Chem 32(3):e3904

    Article  Google Scholar 

  8. Zandarashvili L, Esadze A, Kemme CA, Chattopadhyay A, Nguyen D, Iwahara J (2016) Residence times of molecular complexes in solution from nmr data of intermolecular hydrogen-bond scalar coupling. J Phys Chem Lett 7(5):820

    Article  CAS  Google Scholar 

  9. Rwegasila E, Munissi JJ, Mubofu E, Nyandoro SS, Erasto P (2018) In vivo antimycobacterial studies of toussaintine a-chitosan nanocomposites. Tanzania Journal of Science 44(2):16

    Google Scholar 

  10. Shadrack DM, Swai HS (2019) Solvent effects on molecular encapsulation of Toussantine-a by chitosan nanoparticle: a metadynamics study. J Mol Liq 111434:292

    Google Scholar 

  11. Khezri A, Karimi A, Yazdian F, Jokar M, Mofradnia SR, Rashedi H, Tavakoli Z (2018) Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction. Int J Biol Macromol 114:972

    Article  CAS  Google Scholar 

  12. Tiwary P, Mondal J, Morrone JA, Berne B (2015) Role of water and steric constraints in the kinetics of cavity-ligand unbinding. Proc Natl Acad Sci 112(39):12015

    Article  CAS  Google Scholar 

  13. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100(2):020603

    Article  Google Scholar 

  14. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300

    Article  CAS  Google Scholar 

  15. Ytreberg FM, Swendsen RH, Zuckerman DM (2006) Comparison of free energy methods for molecular systems. J Chem Phys 125(18):184114

    Article  Google Scholar 

  16. Slabber CA, Grimmer CD, Robinson RS (2016) Solution conformations of curcumin in DMSO. J Nat Prod 79(10):2726

    Article  CAS  Google Scholar 

  17. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4(1):17

    Article  CAS  Google Scholar 

  18. Oda A, Okayasu M, Kamiyama Y, Yoshida T, Takahashi O, Matsuzaki H (2007) Evaluation of docking accuracy and investigations of roles of parameters and each term in scoring functions for protein–ligand docking using ArgusLab software. Bull Chem Soc Jpn 80(10):1920

    Article  CAS  Google Scholar 

  19. Abraham MJ, Murtola T, Schulz R, Páll S., Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19

    Article  Google Scholar 

  20. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophys J 40(7):843

    Article  CAS  Google Scholar 

  21. Schüttelkopf A. W., van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60(8):1355

    Article  Google Scholar 

  22. Gereben O, Pusztai L (2011) On the accurate calculation of the dielectric constant from molecular dynamics simulations: The case of SPC/E and SWM4-DP water. Chem Phys Lett 507(1-3):80

    Article  CAS  Google Scholar 

  23. Nosé S (1986) An extension of the canonical ensemble molecular dynamics method. Mol Phys 57(1):187

    Article  Google Scholar 

  24. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182

    Article  CAS  Google Scholar 

  25. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    Article  Google Scholar 

  26. Cheatham TI, Miller J, Fox T, Darden T, Kollman P (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117(14): 4193

    Article  CAS  Google Scholar 

  27. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463

    Article  CAS  Google Scholar 

  28. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99(20):12562

    Article  CAS  Google Scholar 

  29. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 1(5):826

    CAS  Google Scholar 

  30. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, et al. (2009) PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180(10): 1961

    Article  CAS  Google Scholar 

  31. Limongelli V, Bonomi M, Parrinello M (2013) Funnel metadynamics as accurate binding free-energy method. Proc Natl Acad Sci 110(16):6358

    Article  CAS  Google Scholar 

  32. Kang J, Rebek J. Jr. (1996) Entropically driven binding in a self-assembling molecular capsule. Nature 382(6588):239

    Article  CAS  Google Scholar 

  33. Samanta S, Roccatano D (2013) Interaction of curcumin with PEO–PPO–PEO block copolymers: a molecular dynamics study. J Phys Chem B 117(11):3250

    Article  CAS  Google Scholar 

  34. Patsahan T, Ilnytskyi J, Pizio O (2017) On the properties of a single OPLS-UA model curcumin molecule in water, methanol and dimethyl sulfoxide. Molecular dynamics computer simulation results. arXiv:1706.07253

Download references

Acknowledgements

DMS acknowledges the International Centre for Theoretical Physics (ICTP) for supporting his research visit and availing all research facilities. All authors are grateful to Prof. Alessandro Laio (SISSA) for his comments and discussion during the whole project.

Funding

DMS received the financial support from the world Bank, Tanzania, United Republic of Tanzania, through project no. PI:51847 and grant no. 5799-TZ.

Author information

Authors and Affiliations

Authors

Contributions

DMS conceived the study and designed the experiment. DMS and LWK performed all the experiments. DMS developed the first version of the manuscript. DMS, LWK, SSN, and HSS revised and worked on the manuscript to final stage of submission.

Corresponding author

Correspondence to Daniel M Shadrack.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrack, D.M., Kiruri, L.W., Swai, H. et al. Solvent effects on host-guest residence time and kinetics: further insights from metadynamics simulation of Toussaintine-A unbiding from chitosan nanoparticle. J Mol Model 27, 127 (2021). https://doi.org/10.1007/s00894-021-04735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04735-y

Keywords

Navigation