Skip to main content

Advertisement

Log in

Estimation of the Three-Dimensional Pharmacophore of Ligands for Rat Multidrug-Resistance–Associated Protein 2 Using Ligand-Based Drug Design Techniques

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

Multidrug-resistance–associated protein 2 (Mrp2) shows a broad substrate specificity toward amphiphilic organic anions. This study identified key functional groups of ligand molecules for binding to rat Mrp2, determined their relative locations, and examined substrate specificity through receptor mapping using three-dimensional (3D) quantitative structure-activity relationship (3D-QSAR) analysis.

Methods.

Ligand-binding conformations were estimated using conformational analysis (CAMDAS) and molecular superposition (SUPERPOSE) methods to clarify the substrate specificity of rat Mrp2 in relation to 3D ligand structures.

Results.

Two types of binding conformations of ligands for rat Mrp2 were identified. 3D-QSAR comparative molecular-field analysis (CoMFA) revealed a statistically significant model for one type, in which the steric, electrostatic, and log P contributions to the binding affinity for rat Mrp2 were 63.0%, 33.4%, and 3.6%, respectively (n = 16, q2 = 0.59, n = 3, r2 = 0.99, and s = 0.08).

Conclusions.

The 3D pharmacophore of ligands for rat Mrp2, and the ligand-binding region of rat Mrp2, were estimated. Ligand recognition of rat Mrp2 is achieved through interactions in two hydrophobic and two electrostatically positive sites (primary binding sites). The broad substrate specificity of rat Mrp2 might result from the combination of secondary (two electrostatically positive and two electrostatically negative sites) and primary binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

CAMDAS:

Conformational Analyzer with Molecular Dynamics and Sampling

C log P:

calculated log P

CMVs:

canalicular membrane vesicles

CoMFA:

comparative molecular-field analysis

EHBR:

Eisai hyperbilirubinemic rat

MD:

molecular dynamics

Mrp2:

multidrug-resistance–associated protein 2

PLS:

partial least squares

QSAR:

quantitative structure-activity relationship

rmsd:

root-mean-square deviation

SD:

Sprague-Dawley

References

  1. 1. O. R. P. Elferink, D. K. Meijer, F. Kuipers, P. L. Jansen, A. K. Groen, and G. M. Groothuis. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim. Biophys. Acta 1241:215–268 (1995).

    Google Scholar 

  2. 2. M. Yamazaki, H. Suzuki, and Y. Sugiyama. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm. Res. 13:497–513 (1996).

    Google Scholar 

  3. 3. D. Keppler and J. Konig. Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the Mrp2 (cMRP/cMOAT) gene in liver. FASEB J. 11:509–516 (1997).

    Google Scholar 

  4. 4. K. Ito, H. Suzuki, T. Hirohashi, K. Kume, T. Shimizu, and Y. Sugiyama. Molecular cloning of canalicular multispecific organic anion transporter defective in EHBR. Am. J. Physiol. 272:G16–G22 (1997).

    Google Scholar 

  5. 5. C. C. Paulusma, P. J. Bosma, G. J. Zaman, C. T. Bakker, M. Otter, G. L. Scheffer, R. J. Scheper, P. Borst, and O. R. P. Elferink. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 271:1126–1128 (1996).

    Google Scholar 

  6. 6. K. Sathirakul, H. Suzuki, K. Yasuda, M. Hanano, O. Tagaya, T. Horie, and Y. Sugiyama. Kinetic analysis of hepatobiliary transport of organic anions in Eisai hyperbilirubinemic mutant rats. J. Pharmacol. Exp. Ther. 265:1301–1312 (1993).

    Google Scholar 

  7. 7. K. Sathirakul, H. Suzuki, T. Yamada, M. Hanano, and Y. Sugiyama. Multiple transport systems for organic anions across the bile canalicular membrane. J. Pharmacol. Exp. Ther. 268:65–73 (1994).

    Google Scholar 

  8. 8. M. Yamazaki, S. Akiyama, K. Ni’inuma, R. Nishigaki, and Y. Sugiyama. Biliary excretion of pravastatin in rats: contribution of the excretion pathway mediated by canalicular multispecific organic anion transporter. Drug Metab. Dispos. 25:1123–1129 (1997).

    Google Scholar 

  9. 9. H. Ishizuka, K. Konno, H. Naganuma, K. Sasahara, Y. Kawahara, K. Niinuma, H. Suzuki, and Y. Sugiyama. Temocaprilat, a novel angiotensin-converting enzyme inhibitor, is excreted in bile via an ATP-dependent active transporter (cMOAT) that is deficient in Eisai hyperbilirubinemic mutant rats (EHBR). J. Pharmacol. Exp. Ther. 280:1304–1311 (1997).

    Google Scholar 

  10. 10. H. C. Shin, Y. Kato, T. Yamada, K. Niinuma, A. Hisaka, and Y. Sugiyama. Hepatobiliary transport mechanism for the cyclopentapeptide endothelin antagonist BQ-123. Am. J. Physiol. 272:G979–G986 (1997).

    Google Scholar 

  11. 11. T. Ishikawa, M. Muller, C. Klunemann, T. Schaub, and D. Keppler. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J. Biol. Chem. 265:19279–19286 (1990).

    Google Scholar 

  12. 12. K. Kobayashi, Y. Sogame, H. Hara, and K. Hayashi. Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J. Biol. Chem. 265:7737–7741 (1990).

    Google Scholar 

  13. 13. T. Nishida, Z. Gatmaitan, J. Roy-Chowdhry, and I. M. Arias. Two distinct mechanisms for bilirubin glucuronide transport by rat bile canalicular membrane vesicles. Demonstration of defective ATP-dependent transport in rats (TR-) with inherited conjugated hyperbilirubinemia. J. Clin. Invest. 90:2130–2135 (1992).

    Google Scholar 

  14. 14. O. Takenaka, T. Horie, K. Kobayashi, H. Suzuki, and Y. Sugiyama. Kinetic analysis of hepatobiliary transport for conjugated metabolites in the perfused liver of mutant rats (EHBR) with hereditary conjugated hyperbilirubinemia. Pharm. Res. 12:1746– 1755 (1995).

    Google Scholar 

  15. 15. M. Trauner, M. Arrese, C. J. Soroka, M. Ananthanarayanan, T. A. Koeppel, S. F. Schlosser, F. J. Suchy, D. Keppler, and J. L. Boyer. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 113:255–264 (1997).

    Google Scholar 

  16. 16. X. Y. Chu, Y. Kato, and Y. Sugiyama. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 57:1934–1938 (1997).

    Google Scholar 

  17. 17. H. Suzuki and Y. Sugiyama. Role of transporters in the detoxification of xenobiotics: recent advances in the study of cMOAT/MRP. Tanpakushitsu Kakusan Koso 42:1273–1284 (1997).

    Google Scholar 

  18. 18. H. Tsujishita and S. Hirono. CAMDAS: an automated conformational analysis system using molecular dynamics. J. Comput. Aided Mol. Des. 11:305–315 (1997).

    Google Scholar 

  19. 19. K. Iwase and S. Hirono. Estimation of active conformations of drugs by a new molecular superposing procedure. J. Comput. Aided Mol. Des. 13:499–512 (1999).

    Google Scholar 

  20. 20. R. D. Cramer, D. E. Patterson, and J. D. Bunce. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110:5959–5967 (1988).

    Google Scholar 

  21. 21. N. L. Allinger. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99:8127–8134 (1977).

    Google Scholar 

  22. 22. H. Suzuki and Y. Sugiyama. Transporters for bile acids and organic anions. Pharm. Biotechnol. 12:387–439 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Hirono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirono, S., Nakagome, I., Imai, R. et al. Estimation of the Three-Dimensional Pharmacophore of Ligands for Rat Multidrug-Resistance–Associated Protein 2 Using Ligand-Based Drug Design Techniques. Pharm Res 22, 260–269 (2005). https://doi.org/10.1007/s01869-005-1869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s01869-005-1869-8

Key words:

Navigation