Skip to main content
Log in

Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyamidoamine (PAMAM) dendrimers has been anchored on functionalized carbon nanofibers (CNF) and supported Pt–Ru nanoparticles have been prepared with NaBH4 as a reducing agent. The samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. It was shown that Pt–Ru particles with small average size (2.6 nm) were uniformly dispersed on PAMAM/CNF composite support and displayed the characteristic diffraction peaks of Pt face-centered cubic structure. The electrocatalytic activities of the prepared-composites (20% Pt–Ru/PAMAM-CNF) were examined by using cyclic voltammetry for oxidation of methanol. The electrocatalytic activity of the CNF-based composite (20% Pt–Ru/PAMAM-CNF) electrode for methanol oxidation showed better performance than that of commercially available Johnson Mathey 20% Pt–Ru/C catalyst. The results imply that CNF-based PAMAM composite electrodes are excellent potential candidates for application in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McNicol BD, Rand DAJ, Williams KR (2001) J Power Sources 83:47 doi:10.1016/S0378-7753(01)00882-5

    Article  Google Scholar 

  2. Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells (Weinh) 1:5 doi:10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G

    Article  CAS  Google Scholar 

  3. Uchida M, Aoyama Y, Tanabe N, Yanagihara N, Eda N, Ohta A (1995) J Electrochem Soc 142:2572 doi:10.1149/1.2050055

    Article  CAS  Google Scholar 

  4. Antolini E (2007) Appl Catal B Enviromental 724:324 doi:10.1016/j.apcatb.2007.03.002

    Article  Google Scholar 

  5. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J (2004) Chem Commun 7:840 doi:10.1039/b400607k

    Article  Google Scholar 

  6. Bessel CA, Laubernds K, Rodriguez NM, Baker RTK (2001) J Phys Chem B 105:1115 doi:10.1021/jp003280d

    Article  CAS  Google Scholar 

  7. Steigerwalt ES, Deluga GA, Lukehart CM (2002) J Phys Chem B 106:760 doi:10.1021/jp012707t

    Article  CAS  Google Scholar 

  8. Li WZ, Liang CH, Zhou WJ, Xin Q (2003) J Phys Chem B 107:6292 doi:10.1021/jp022505c

    Article  CAS  Google Scholar 

  9. Kim C, Kim YJ, Kim YA, Yanagisawam T, Park KC, Endo M, Dresselhaus MS (2004) J Appl Phys 96:5903 doi:10.1063/1.1804242

    Article  CAS  Google Scholar 

  10. Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan YS (2004) Nano Lett 4:345 doi:10.1021/nl034952p

    Article  CAS  Google Scholar 

  11. Maiyalagan T (2008) Appl Catal B Enviromental 89:286 doi:10.1016/j.apcatb.2007.11.033

    Article  Google Scholar 

  12. Maiyalagan T, Viswanathan B, Varadaraju UV (2005) Electrochem Commun 7:905 doi:10.1016/j.elecom.2005.07.007

    CAS  Google Scholar 

  13. Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y (2002) Physica B 323:124 doi:10.1016/S0921-4526(02)00871-2

    Article  CAS  Google Scholar 

  14. Hyeon T, Han S, Sung YE, Park KW, Kim YW (2003) Angew Chem Int Ed 42:4352 doi:10.1002/anie.200250856

    Article  CAS  Google Scholar 

  15. Yu RQ, Chen LW, Liu QP (1998) Chem Mater 10:718 doi:10.1021/cm970364z

    Article  CAS  Google Scholar 

  16. Knecht MR, Wright DW (2004) Chem Mater 16:4890 doi:10.1021/cm049058t

    Article  CAS  Google Scholar 

  17. Zhao MQ, Crooks RM (1999) Adv Mater 11:217 doi:10.1002/(SICI)1521-4095(199903)11:3<217::AID-ADMA217>3.0.CO;2-7

    Article  CAS  Google Scholar 

  18. Zhao MQ, Crooks RM (1999) Chem Mater 11:3379 doi:10.1021/cm990435p

    Article  CAS  Google Scholar 

  19. Ye H, Crooks RM (2005) J Am Chem Soc 127:4930 doi:10.1021/ja0435900

    Article  CAS  Google Scholar 

  20. Zhao M, Crooks RM (1999) Adv Mater 11:217 doi:10.1002/(SICI)1521-4095(199903)11:3<217::AID-ADMA217>3.0.CO;2-7

    Article  CAS  Google Scholar 

  21. Ye H, Crooks RM (2007) J Am Chem Soc 129:3627

    Article  CAS  Google Scholar 

  22. Ledesma-Garci J, Escalante Garci IL, Rodri FJ, Chapman TW, Godinez LA (2008) J Appl Electrochem 38:515 doi:10.1007/s10800-007-9466-2

    Article  Google Scholar 

  23. Vijayaraghavan G, Stevenson KJ (2007) Langmuir 23:5279 doi:10.1021/la0637263

    Article  CAS  Google Scholar 

  24. Wasmus S, Küver A (1999) J Electroanal Chem 461:14 doi:10.1016/S0022-0728(98)00197-1

    Article  CAS  Google Scholar 

  25. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) J Phys Chem 98:617 doi:10.1021/j100053a042

    Article  CAS  Google Scholar 

  26. Gonzalez-Fuentes MA, Manrıquez J, Gutierrez-Granados S, Alatorre-Ordaz A, Godınez LA (2005) Chem Commun 8:898 doi:10.1039/b412442a

    Article  Google Scholar 

  27. Kim JW, Choi E-A, Park S-M (2003) J Electrochem Soc 150:E202 doi:10.1149/1.1554727

    Article  CAS  Google Scholar 

  28. Raghu S, Nirmal RG, Mathiyarasu J, Berchmans S, Phani KLN, Yegnaraman V (2007) Catal Lett 119:40 doi:10.1007/s10562-007-9154-1

    Article  CAS  Google Scholar 

  29. Wang DL, Zhuang L, Lu JT (2007) J Phys Chem C 111:16416 doi:10.1021/jp073062l

    Article  CAS  Google Scholar 

  30. Guo JS, Sun GQ, Sun SG, Yan SY, Yang WQ, Qi J, Yan YS, Xin Q (2007) J Power Sources 168:299 doi:10.1016/j.jpowsour.2007.02.085

    Article  CAS  Google Scholar 

  31. Bock C, Paquet C, Couillard M, Botton GA, MacDougall B (2004) J Am Chem Soc 126:8028 doi:10.1021/ja0495819

    Article  CAS  Google Scholar 

  32. Jarvi TD, Stuve EM (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis, frontiers of electrochemistry series, Chapter 3. Wiley-VCH, New York, pp 75–153

    Google Scholar 

  33. Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163 doi:10.1016/S0022-0728(97)00018-1

    Article  CAS  Google Scholar 

  34. Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) J Phys Chem B 109:22212 doi:10.1021/jp0555448

    Article  CAS  Google Scholar 

  35. Manoharan R, Goodenough JB (1992) J Mater Chem 2:875 doi:10.1039/jm9920200875

    Article  CAS  Google Scholar 

  36. Liu Z, Ling XY, Su X, Lee JY (2004) J Phys Chem B 108:8234 doi:10.1021/jp049422b

    Article  CAS  Google Scholar 

  37. Deivaraj TC, Lee JY (2005) J Power Sources 142:43 doi:10.1016/j.jpowsour.2004.10.010

    Article  CAS  Google Scholar 

  38. Maiyalagan T, Nawaz Khan F (2008) J Nanosci Nanotechnol doi:10.1016/j.catcom.2008.10.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maiyalagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiyalagan, T. Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation. J Solid State Electrochem 13, 1561–1566 (2009). https://doi.org/10.1007/s10008-008-0730-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0730-0

Keywords

Navigation