Skip to main content
Log in

Preparation and characterization of AuPt alloy nanoparticle–multi-walled carbon nanotube–ionic liquid composite film for electrocatalytic oxidation of cysteine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gold–platinum (AuPt) alloy particles were fabricated directly on multi-walled carbon nanotubes (MWNT)–ionic liquid (i.e., trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide, [P6,6,6,14][NTf2]) composite coated glassy carbon electrode (GCE) by electrodeposition method. Scanning electron microscope image showed that they were well-dispersed nanocluster consisting of smaller nanoparticles, and their size was about 70 nm. X-ray diffraction experiment showed that they were single-phase alloy nanomaterial, and the calculated composition was consisting with that obtained by energy dispersive X-ray spectroscopy. The resulting modified electrode (i.e., AuPt–MWNT–[P6,6,6,14][NTf2]/GCE) presented high catalytic activity for the electrochemical oxidation of cysteine. The peak potential of cysteine shifted to 0.42 V (versus saturated calomel electrode) in 0.1 M H2SO4 and the peak current increased greatly in comparison with that on the corresponding Pt (or Au)–MWNT–[P6,6,6,14][NTf2]/GCE. Under the optimized conditions, the oxidation current of cysteine at 0.45 V was linear to its concentration in the range of 5.0 × 10−7 ∼ 4.0 × 10−5 M with a sensitivity of 43.8 mA M−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Viries N, De Flora S (1993) J Cell Biochem 51:271

    Google Scholar 

  2. Wang ZL, Pang DW (1990) J Electroanal Chem 283:349

    Article  CAS  Google Scholar 

  3. Yosypchuk B, Novotny I (2002) Talanta 56:971

    Article  CAS  Google Scholar 

  4. Salimi A, Hallaj R (2005) Talanta 66:967

    Article  CAS  Google Scholar 

  5. Limson J, Nyokong T (1997) Electroanalysis 9:255

    Article  CAS  Google Scholar 

  6. Mazloum Ardakani M, Rahimi P, Ebrahimi Karami P, Zare HR, Naeimi H (2007) Sensors and Actuators B 123:763

    Article  Google Scholar 

  7. Xu YH, Lin XQ (2007) J Power Sources 170:13

    Article  CAS  Google Scholar 

  8. Song CR, Ge QF, Wang LC (2005) J Phys Chem B 109:22341

    Article  CAS  Google Scholar 

  9. Mihut C, Descorme C, Duprez D, Amiridis MD (2002) J Catal 212:125

    Article  CAS  Google Scholar 

  10. Luo J, Maye MM, Kariuki NN, Wang L, Njoki P, Lin Y, Schadt M, Naslund HR, Zhong CJ (2005) Catal Today 99:291

    Article  CAS  Google Scholar 

  11. Habrioux A, Sibert E, Servat K, Vogel W, Kokoh KB, Alonso-Vante N (2007) J Phys Chem B 111:10329

    Article  CAS  Google Scholar 

  12. Huang JE, Guo DJ, Yao YG, Li HL (2005) J Electroanal Chem 577:93

    Article  CAS  Google Scholar 

  13. Watanabe M, Uchida M, Motoo S (1987) J Electroanal Chem 229:395

    Article  CAS  Google Scholar 

  14. Yao YL, Ding Y, Sheng L, Xia XH (2006) Carbon 44:61

    Article  Google Scholar 

  15. Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Biosens Bioelectron 24:3481

    Article  CAS  Google Scholar 

  16. Xiao F, Zhao FQ, Zeng JJ, Zeng BZ (2009) Electrochem Commun 11:1550

    Article  CAS  Google Scholar 

  17. Thangavel S, Ramaraj R (2008) J Phys Chem C 112:19825

    Article  CAS  Google Scholar 

  18. Riu J, Maroto A, Rius FX (2006) Talanta 69:288

    Article  CAS  Google Scholar 

  19. Silvester DS, Compton RG (2006) Zeitschrift Fur Ur Physikalische Chemie-International J Res Phys Chem & Chem Phys 220:1247

    CAS  Google Scholar 

  20. Xiao F, Zhao FQ, Zhang YF, Guo GP, Zeng BZ (2009) J Phys Chem C 113:849

    Article  CAS  Google Scholar 

  21. Xiao F, Mo ZR, Zhao FQ, Zeng BZ (2008) Electrochem Commun 10:1740

    Article  CAS  Google Scholar 

  22. Xu JB, Zhao TS, Liang Z, Zhu LD (2008) Chem Mater 20:1688

    Article  CAS  Google Scholar 

  23. Radmilovic V, Gasteiger HA, Ross PN (1995) J Catal 154:98

    Article  CAS  Google Scholar 

  24. Klug HP, Alexander LE (1974) In X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, 562

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the support of the National Natural Science Foundation of China (no. 20173040) and the State Key Laboratory of Electroanalytical Chemistry (no. 200805), Changchun Institute of Applied Chemistry, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baizhao Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Z., Zhao, F., Xiao, F. et al. Preparation and characterization of AuPt alloy nanoparticle–multi-walled carbon nanotube–ionic liquid composite film for electrocatalytic oxidation of cysteine. J Solid State Electrochem 14, 1615–1620 (2010). https://doi.org/10.1007/s10008-010-1003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1003-2

Keywords

Navigation