Skip to main content

Advertisement

Log in

Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous lithium titanate (Li4Ti5O12) fibers, composed of interconnected nanoparticles, are synthesized by thermally treating electrospun precursor fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li4Ti5O12 fibers calcined at 700 °C have an average diameter of 230 nm. Especially, the individual fiber is composed of nanoparticles with an average diameter of 47.5 nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The results show that as-prepared Li4Ti5O12 exhibits good cycling capacity and rate capability. At the charge–discharge rate of 0.2, 0.5, 1, 2, 10, 20, 40, and 60 C, its discharge capacities are 172.4, 168.2, 163.3, 155.9, 138.7, 123.4, 108.8, and 90.4 mAh g−1, respectively. After 300 cycles at 20 C, it remained at 120.1 mAh g−1. The obtained results thus strongly support that the electrospun Li4Ti5O12 fibers could be one of the most promising candidate anode materials for lithium-ion batteries in electric vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Carbon 38:183–197

    Article  CAS  Google Scholar 

  2. Scrosati B (1995) Nature 373:557–558

    Article  CAS  Google Scholar 

  3. Nelson RF (2000) J Power Sources 91:2–26

    Article  CAS  Google Scholar 

  4. Guerfi A, Sévigny S, Lagacé M, Hovington P, Kinoshita K, Zaghib K (2003) J Power Sources 119–121:88–94

    Article  Google Scholar 

  5. Scharner S, Weppner W, Schmid-Beurmann P (1999) J Electrochem Soc 146:857–861

    Article  CAS  Google Scholar 

  6. Jiang C, Ichihara M, Honma I, Zhou H (2007) Electrochim Acta 52:6470–6475

    Article  CAS  Google Scholar 

  7. Cheng L, Yan J, Zhu GN, Luo JY, Wang CX, Xia YY (2010) J Mater Chem 20:595–602

    Article  CAS  Google Scholar 

  8. Li JR, Tang ZL, Zhang ZT (2005) Electrochem Commun 7:894–899

    Article  CAS  Google Scholar 

  9. Kim HK, Bak SM, Kim KB (2010) Electrochem Commun 12:1768–1771

    Article  CAS  Google Scholar 

  10. Prakash AS, Manikandan P, Ramesha K, Sathiya M, Tarascon JM, Shukla AK (2010) Chem Mater 22:2857–2863

    Article  CAS  Google Scholar 

  11. Cui W, He YB, Tang ZY, Yang QH, Xu Q, Su FY, Ma L (2011) J Solid State Electrochem. doi:10.1007/s10008-011-1316-9

  12. He ND, Wang BS, Huang JJ (2010) J Solid State Electrochem 14:1241–1246

    Article  CAS  Google Scholar 

  13. Zhao YM, Liu GQ, Liu L, Jiang ZY (2009) J Solid State Electrochem 13:705–711

    Article  CAS  Google Scholar 

  14. Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) J Electrochem Soc 148:A930–A939

    Article  CAS  Google Scholar 

  15. Cheng L, Liu HJ, Zhang JJ, Xiong HM, Xia YY (2006) J Electrochem Soc 153:A1472–A1477

    Article  CAS  Google Scholar 

  16. Dokko K, Sugaya J, Nakano H, Yasukawa T, Matsue T, Kanamura K (2007) Electrochem Commun 9:857–862

    Article  CAS  Google Scholar 

  17. Chen J, Yang L, Fang S, Tang Y (2010) Electrochim Acta 55:6596–6600

    Article  CAS  Google Scholar 

  18. Rahman MM, Wang JZ, Hassan MF, Chou SL, Wexler D, Liu HK (2010) J Power Sources 195:4297–4303

    Article  CAS  Google Scholar 

  19. Kang E, Jung YS, Kim GH, Chun J, Wiesner U, Dillon AC, Kim JK, Lee J (2011) Adv Funct Mater 21:4349–4357

    Article  CAS  Google Scholar 

  20. Yu Y, Gu L, Wang CL, Dhanabalan A, Van Aken PA, Maier J (2009) Angew Chem Int Ed 48:6485–6489

    Article  CAS  Google Scholar 

  21. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Adv Funct Mater 16:2393–2397

    Article  CAS  Google Scholar 

  22. Chan CK, Zhang XF, Cui Y (2008) Nano Lett 8:307–309

    Article  CAS  Google Scholar 

  23. Chan CK, Peng H, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31–35

    Article  CAS  Google Scholar 

  24. Lu HW, Zeng W, Li YS, Fu ZW (2007) J Power Sources 164:874–879

    Article  CAS  Google Scholar 

  25. Guo B, Li Y, Yao Y, Lin Z, Ji L, Xu G, Liang Y, Shi Q, Zhang X (2011) Solid State Ionics 204–205:61–65

    Article  Google Scholar 

  26. Venkateswara Rao C, Rambabu B (2010) Solid State Ionics 181:839–843

    Article  Google Scholar 

  27. Xu R, Li J, Tang Z, Zhang Z (2011) J Nanomater. doi:10.1155/2011/635416

  28. Li G, Xia J, Jiao J, Chen L, Shen P (2011) Chin J Chem 29:1824–1828

    Article  CAS  Google Scholar 

  29. Liao XZ, Ma ZF, Gong Q, He YS, Pei L, Zeng LJ (2008) Electrochem Commun 10:691–694

    Article  CAS  Google Scholar 

  30. Chen JZ, Yang L, Fang SH, Hirano S, Tachibana K (2011) J Power Sources. doi:10.1016/j.jpowsour.2011.10.052

Download references

Acknowledgments

This work was financially sponsored by the National Post-Doctoral Fund of China (no. 20090461013), the postdoctoral fund of Xiangtan University, and the Open Fund from Key Laboratory of Advanced Functional Polymeric Materials of Hunan Province (no. AFPM200906), the project of Science and Technology of Hunan Province (no. 2010RS4012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qizhen Xiao or Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Xiao, Q., Li, Z. et al. Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries. J Solid State Electrochem 16, 3307–3313 (2012). https://doi.org/10.1007/s10008-012-1776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1776-6

Keywords

Navigation