Skip to main content
Log in

Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Layered Co3O4 composed of oriented self-assembled micrometer-length rectangular 2D flakes has been successfully synthesized by a hydrothermal method in combination with subsequent calcination process. Structural and morphological characterizations were performed using powder X-ray diffraction and field emission scanning electron microscopy. The component and thermal stability of the sample were measured by FT-IR and thermal analyses, including thermogravimetry and differential thermal analysis. The electrochemical performances of the as-prepared Co3O4 product were investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and constant current charge/discharge techniques. The electrochemical results demonstrate that the layered Co3O4 product displays good capacitive behavior with a specific capacitance of 263 F g−1 within a potential range of −0.4–0.55 V at a current density of 1 A g−1 and a large capacity retention with 89.4 % of the initial capacitance over 1,000 consecutive cycles at 3 A g−1, indicating that the as-prepared Co3O4 product can be a promising electroactive material for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Largeot C, Portet C, Chmiola J, Taberna P, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  2. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  3. Conway BE (1991) Transition from supercapacitor to battery behavior in electrochemical energy storage. J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  4. Babakhani B, Ivey DG (2010) Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J Power Sources 195:2110–2117

    Article  CAS  Google Scholar 

  5. Lee J, Liang K, An K, Lee Y (2005) Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth Met 150:153–157

    Article  CAS  Google Scholar 

  6. Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1705

    Article  CAS  Google Scholar 

  7. Liang YY, Bao SJ, Li HL (2007) Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. J Solid State Electrochem 11:571–576

    Article  CAS  Google Scholar 

  8. Chen Y, Hu C (2003) Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochem Solid State Lett 6:A210–A213

    Article  CAS  Google Scholar 

  9. Reddy RN, Reddy RG (2003) Sol-gel MnO2 as an electrode material for electrochemical capacitors. J Power Sources 124:330–337

    Article  CAS  Google Scholar 

  10. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electroche Soc 142:2699–2703

    Article  CAS  Google Scholar 

  11. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Chem Mater 14:1610–1613

    Article  CAS  Google Scholar 

  12. Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Edn 42:4092–4096

    Article  CAS  Google Scholar 

  13. Broughton JN, Brett MJ (2004) Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochim Acta 50:4814–4819

    Article  Google Scholar 

  14. Toupin M, Brousse T, Be’langer (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  15. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem Commun 35:4213–4215

    Article  Google Scholar 

  16. Kalu EE, Nwoga TT, Srinivasan V, Weidner JW (2001) Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. J Power Sources 92:163–167

    Article  CAS  Google Scholar 

  17. Cao L, Lu M, Li HL (2005) Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance. J Electrochem Soc 152:A871–A875

    Article  CAS  Google Scholar 

  18. Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2009) A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13:333–340

    Article  CAS  Google Scholar 

  19. Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21:3228–3233

    Article  CAS  Google Scholar 

  20. Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH (2011) Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem Commun 47:1252–1254

    Article  CAS  Google Scholar 

  21. Zhu T, Chen JS, Lou XW (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20:7015–7020

    Article  CAS  Google Scholar 

  22. Zheng M, Cao J, Liao S, Liu J, Chen H, Zhao Y, Dai W, Ji G, Cao J, Tao JJ (2009) Preparation of mesoporous Co3O4 nanoparticles via solid−liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. Phys Chem C 113:3887–3894

    Article  CAS  Google Scholar 

  23. Meher SK, Justin P, Ranga Rao G (2010) Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochim Acta 55:8388–8396

    Article  CAS  Google Scholar 

  24. Justin P, Ranga Rao G (2010) CoS spheres for high-rate electrochemical capacitive energy storage application. Int J Hydrogen Energy 35:9709–9715

    Article  CAS  Google Scholar 

  25. Meher SK, Justin P, Ranga Rao G (2011) Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale 3:683–692

    Article  CAS  Google Scholar 

  26. Meher SK, Justin P, Ranga Rao G (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3:2063–2073

    Article  CAS  Google Scholar 

  27. Xiong S, Yuan C, Zhang X, Xi B, Qian Y (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem—Eur J 15:5320–5326

    CAS  Google Scholar 

  28. Balaya P (2008) Size effects and nanostructured materials for energy applications. Energy Environ Sci 1:645–654

    Article  CAS  Google Scholar 

  29. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB (2011) Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem Commun 47:5786–5788

    Article  CAS  Google Scholar 

  30. Wang DW, Wang QH, Wang TM (2011) Morphology-controllable synthesis of Cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50:6482–6492

    Article  CAS  Google Scholar 

  31. Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J (2009) Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous Cobalt oxide nanorods. J Phys Chem C 113:4357–4361

    Article  CAS  Google Scholar 

  32. Wang L, Liu XH, Wang X, Yang X, Lu L (2010) Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Curr Appl Phys 10:1422–1426

    Article  Google Scholar 

  33. Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760

    Article  CAS  Google Scholar 

  34. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22:347–351

    Article  CAS  Google Scholar 

  35. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139

    Article  CAS  Google Scholar 

  36. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  37. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  CAS  Google Scholar 

  38. Zhao ZG, Geng FX, Bai JB, Cong HT, Cheng HM (2007) Facile and controlled synthesis of 3D nanorods-based urchinlike and nanosheets-based flowerlike Cobalt basic salt nanostructures. J Phys Chem C 111:3848–3852

    Article  CAS  Google Scholar 

  39. Kong LB, Lang JW, Liu M, Luo YC, Kang L (2009) Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J Power Sources 194:1194–1201

    Article  CAS  Google Scholar 

  40. Zhang ZT, Rondinone AJ, Ma JX, Shen J, Dai S (2005) Morphologically templated growth of aligned spinel CoFe2O4 nanorods. Adv Mater 17:1415–1419

    Article  CAS  Google Scholar 

  41. Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: From nanodots to nanorods. Angew Chem Int Ed 41:1188–1191

    Article  CAS  Google Scholar 

  42. Wang X, Wu XL, Guo YG, Zhong Y, Cao X, Ma Y, Yao J (2010) Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 20:1680–1686

    Article  CAS  Google Scholar 

  43. Wang HW, Hu ZA, Chang YQ, Chen YL, Zhang ZY, Yang YY, Wu HY (2011) Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater Chem Phys 130:672–679

    Article  CAS  Google Scholar 

  44. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Potentiostatically deposited nanostructured α-Co(OH)2: a High performance electrode material for redox-capacitors. Electrochem Commun 9:2315–2319

    Article  CAS  Google Scholar 

  45. Cuentas-Gallegos AK, Lira-Cantu M, Casañ-Pastor N, Gómez-Romero P (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv Funct Mat 15:1125–1133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by Natural Science Foundation in Gansu Science and Technology Committee (0803RJA005), International Cooperation Project of the Ministry of Science and Technology (No. 2010DFB90690-4), International Cooperation Project of Shanxi Province (No. 2010081031-2), National Nature Science Foundation of China (No. 51002166, 51061130536, 51172251), and Shanxi Province Science Foundation for Youths (No. 2010021023-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaixi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Li, K., Sun, G. et al. Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. J Solid State Electrochem 17, 55–61 (2013). https://doi.org/10.1007/s10008-012-1856-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1856-7

Keywords

Navigation