Skip to main content
Log in

Titanium coated with high-performance nanocrystalline ruthenium oxide synthesized by the microwave-assisted sol–gel procedure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ruthenium oxide coating on titanium was prepared by the sol–gel procedure from well-defined colloidal oxide dispersions synthesized by the microwave (MW)-assisted hydrothermal route under defined temperature and pressure heating conditions. The dispersions were characterized by dynamic light scattering (DLS) measurements and scanning electron microscopy (SEM). The electrochemical properties were analyzed as capacitive performances gained by cyclic voltammetry and electrochemical impedance spectroscopy and as the electrocatalytic activity for oxygen evolution from acid solution. The obtained dispersions were polydisperse and contained regular particles and agglomerates of increasing surface energy and decreasing particle size as the MW-assisted heating conditions were intensified. Owing to these features of the precursor dispersions, the obtained coatings had considerably improved capacitive performances and good electrocatalytic activity for oxygen evolution at high overpotentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trasatti S (1999) In: Wieckowski A (ed) Interfacial electrochemistry—theory, experiment and applications. Marcel Dekker Inc., New York, p. 769

    Google Scholar 

  2. Hu JM, Zhang JQ, Cao CN (2000) Int J Hydrog Energy 29:791

    Article  Google Scholar 

  3. Santana MHP, De Faria LA, Boodts JFC (2004) Electrochim Acta 49:1925

    Article  CAS  Google Scholar 

  4. Comninellis C, Vercesi PG (1991) J Appl Electrochem 21:335

    Article  CAS  Google Scholar 

  5. Yagi M, Tomita E, Kuwabara T (2005) J Electroanal Chem 579:83

    Article  CAS  Google Scholar 

  6. Jung YW, Lee J, Tak Y (2004) Electrochem Solid State Lett 7:H5

    Article  CAS  Google Scholar 

  7. De Nora elettrodi network (2009) http://www.lidaproducts.com. Accessed May 2009

  8. Patil PS, Kawar RW, Sadale SB (2005) Electrochim Acta 50:2527

    Article  CAS  Google Scholar 

  9. Jovanović V, Dekanski A, Despotov P, Nikolić B, Atanasoski R (1992) J Electroanal Chem 339:147

    Article  Google Scholar 

  10. Yoshinaga N, Sugimoto W, Takasu Y (2008) Electrochim Acta 54:566

    Article  CAS  Google Scholar 

  11. Grupioni AAF, Arashiro E, Lassali TAF (2002) Electrochim Acta 48:407

    Article  CAS  Google Scholar 

  12. Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R (2005) Mater Chem Phys 94:226

    Article  CAS  Google Scholar 

  13. De Oliveira-Sousa A, da Silva MAS, Machado SAS, Avaca LA, De Lima-Neto P (2000) Electrochim Acta 45:4467

    Article  CAS  Google Scholar 

  14. Patil PS, Kawar RK, Sadale SB (2005) Appl Surf Sci 249:367

    Article  CAS  Google Scholar 

  15. Chen RS, Korotcov A, Huang YS, Tsai DS (2006) Nanotechnology 17:R67

    Article  CAS  Google Scholar 

  16. Xia MX, Wang CB, Gong YS, Shen Q, Zhang LM (2006) Rare Met Mater Eng 35:820

    CAS  Google Scholar 

  17. Mousty C, Fóty G, Comninellis C, Reid V (1999) Electrochim Acta 45:451

    Article  CAS  Google Scholar 

  18. Panić VV, Nikolić BŽ (2008) J Serb Chem Soc 73:1083

    Article  Google Scholar 

  19. Massot L, Palau P, Savall A, Taxil P (2007) J New Mater Electrochem Sys 10:123

    CAS  Google Scholar 

  20. Xu L, Xin Y, Wang J (2009) Electrochim. Acta 54:1820

    Article  CAS  Google Scholar 

  21. Osman JR, Crayston JA, Pratt A, Richens DT (2008) J Sol-Gel Sci Technol 46:126

    Article  CAS  Google Scholar 

  22. Faraji S, Nasir Ani F (2014) J Power Sources 263:338

    Article  CAS  Google Scholar 

  23. Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan J-L (2010) J Phys Chem C 114:2448

    Article  CAS  Google Scholar 

  24. Chang K-H, Hu C-C, Huang C-M, Liu L-Y, Chan C-I (2011) J Power Sources 196:2387

    Article  CAS  Google Scholar 

  25. Hu C-C, Yang LY, Lee T-C (2010) Electrochem Solid-State Lett 13:A173

    Article  CAS  Google Scholar 

  26. Kim J-Y, Kim K-H, Kim H-K, Park S-H, Chul Roh K, Kim K-B (2015) ACS Appl Mater Interfaces 7:16686

    Article  CAS  Google Scholar 

  27. Kim J-Y, Kim K-H, Kim H-K, Park S-H, Kyung Yoon Chung KY, Kim K-B (2014) RSC Adv 4:16115

    Article  CAS  Google Scholar 

  28. Nikolić BŽ, Panić V (2014) In: Kreysa G, Ota K-I, Savinell RF (eds) Encyclopedia of applied electrochemistry. Springer, New York, p. 411

    Chapter  Google Scholar 

  29. Karlsson RK, Cornell A (2016) Chem Rev 116:2982–3028

    Article  CAS  Google Scholar 

  30. Burke LD, Murphy OJ (1980) J Electroanal Chem Interf Electrochem 112:39–50

    Article  CAS  Google Scholar 

  31. Ardizzone S, Trasatti S (1996) Adv Colloid Interf Sci 64:173

    Article  CAS  Google Scholar 

  32. Liu T, Pell WG, Conway BE (1997) Electrochim Acta 42:3541

    Article  CAS  Google Scholar 

  33. Conway B (1999) Electrochemical supercapacitors—scientific fundamentals and technological applications. Plenum Publishers, New York, pp. 277–286

    Google Scholar 

  34. Panić V, Dekanski A, Milonjić S, Atanasoski R, Nikolić B (2000) Mater Sci Forum 352:117

    Article  Google Scholar 

  35. Trasatti S, Petrii OA (1992) J Electroanal Chem 327:353

    Article  CAS  Google Scholar 

  36. Pelegrino RRL, Vicentin LC, De Andrade AR, Bertazzoli R (2002) Electrochem Commun 4:139

    Article  CAS  Google Scholar 

  37. Wang Y, Foo CY, Hoo TK, Ng M, Lin J (2010) Chem Eur J 16:3598

    Article  CAS  Google Scholar 

  38. Guerrini E, Trasatti S (2006) Russ J Electrochem 42:1017

    Article  CAS  Google Scholar 

  39. Castelli P, Trasatti S, Pollak FH, Ogrady WE (1986) J Electroanal Chem 210:189

    Article  CAS  Google Scholar 

  40. Fang Y-H, Liu Z-P (2010) J Am Chem Soc 132:18214

    Article  CAS  Google Scholar 

  41. Alves VA, Silva LA, Boodts JFC (1998) J Appl Electrochem 28:899

    Article  CAS  Google Scholar 

  42. Lassali TAF, Boodts JFC, Bulhões LOS (2000) J Appl Electrochem 30:625

    Article  CAS  Google Scholar 

  43. Panić VV, Vidaković TR, Dekanski AB, Mišković-Stanković VB, Nikolić B (2007) J Electroanal Chem 609:120

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Ministry of Education, Science and Technological Development (project no. 172060) is acknowledged. The authors thank Dr. Uroš Lačnjevac from the Institute of Multidiscilinary Research, University of Belgrade, for the analysis on scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Panić.

Additional information

This article is dedicated to Professor György Inzelt, our dear friend, on the occasion of his 70th birthday, in recognition of his numerous scientific and educational contributions to contemporary electrochemistry.

Electronic supplementary material

ESM 1

(PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šekularac, G., Košević, M., Drvenica, I. et al. Titanium coated with high-performance nanocrystalline ruthenium oxide synthesized by the microwave-assisted sol–gel procedure. J Solid State Electrochem 20, 3115–3123 (2016). https://doi.org/10.1007/s10008-016-3343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3343-z

Keywords

Navigation