Skip to main content
Log in

Direct methane operation of a micro-tubular solid oxide fuel cell with a porous zirconia support

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel micro-tubular solid oxide fuel cell (SOFC) design with an inert support was proposed for operation on direct hydrocarbon fuels with an improved stability. In this design, the inert support also serves as a diffusion barrier between the fuel stream and Ni cermet anode. The barrier effect leads to higher local steam to carbon ratios in the anode, thus inhibiting carbon deposition. To demonstrate this concept, we fabricated micro-tubular SOFCs with a porous yttria-stabilized zirconia (YSZ) support. Ni, Ni-scandia-stabilized zirconia (ScSZ), ScSZ, strontium-doped lanthanum manganite (LSM)–ScSZ, and LSM were used as the anode current collector, anode, electrolyte, cathode, and cathode current collector, respectively. Good electrochemical performance was achieved with hydrogen and methane fuels in a temperature range 600–750 °C. Continuous cell operation on direct methane fuel for >40 h at 750 °C under moderate current densities delivered stable voltage without any evident performance degradation due to carbon deposition. The absence of carbon deposition on the anode and anode current collector layers was also confirmed by scanning electron microscope images and energy-dispersive X-ray spectra. We further discuss oxidation mechanism of the direct methane fuel and removal of the carbon possibly formed in the anodic layers during stability testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Energy Policy 36:4356–4362

    Article  Google Scholar 

  3. Ormerod RM (2003) Chem Soc Rev 32:17–28

    Article  CAS  Google Scholar 

  4. Wachsman ED, Lee KT (2011) Science 334:935–939

    Article  CAS  Google Scholar 

  5. Kuchonthara P, Bhattacharya S, Tsutsumi A (2003) J Power Sources 124:65–75

    Article  CAS  Google Scholar 

  6. Kuchonthara P, Bhattacharya S, Tsutsumi A (2005) Fuel 84:1019–1021

    Article  CAS  Google Scholar 

  7. Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z (2010) J Power Sources 195:685–702

    Article  CAS  Google Scholar 

  8. Buonomano A, Calise F, d’Accadia MD, Palombo A, Vicidomini M (2015) Appl Energy 156:32–85

    Article  CAS  Google Scholar 

  9. Minh NQ (2004) Solid State Ionics 174:271–277

    Article  CAS  Google Scholar 

  10. Murray EP, Tsai T, Barnett SA (1999) Nature 400:649–651

    Article  CAS  Google Scholar 

  11. Park S, Vohs JM, Gorte RJ (2000) Nature 404:265–267

    Article  CAS  Google Scholar 

  12. Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2004) J Electroceram 13:669–675

    Article  CAS  Google Scholar 

  13. Zhan Z, Barnett SA (2005) Science 308:844–847

    Article  CAS  Google Scholar 

  14. Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Science 326:126–129

    Article  CAS  Google Scholar 

  15. Ye XF, Yuan C, Chen YP, Zhong CY, Zhan ZL, Wang SR (2014) J Electrochem Soc 161:F894–F898

    Article  CAS  Google Scholar 

  16. Sumi H, Yamaguchi T, Hamamoto K, Suzuki T, Fujishiro Y (2012) J Power Sources 220:74–78

    Article  CAS  Google Scholar 

  17. Kim Y, Kim JH, Bae J, Yoon CW, Nam SW (2012) J Phys Chem C 116:13281–13288

    Article  CAS  Google Scholar 

  18. Miao H, Liu G, Chen T, He C, Peng J, Ye S, Wang WG (2015) J Solid State Electrochem 19:639–646

    Article  CAS  Google Scholar 

  19. Mogensen M, Kammer K (2003) Annu Rev Mater Res 33:321–331

    Article  CAS  Google Scholar 

  20. Atkinson A, Barnett S, Gorte RJ, Irvine JT, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Nature Mater 3:17–27

    Article  CAS  Google Scholar 

  21. Tsipis EV, Kharton VV (2011) J Solid State Electrochem 15:1007–1040

    Article  CAS  Google Scholar 

  22. Wang W, Su C, Wu Y, Ran R, Shao Z (2013b) Chem Rev 113:8104–8151

    Article  CAS  Google Scholar 

  23. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) J Electrochem Soc 149:A247–A250

    Article  CAS  Google Scholar 

  24. Nikolla E, Schwank J, Linic S (2009) J Electrochem Soc 156:B1312–B1316

    Article  CAS  Google Scholar 

  25. Wu X, Zhou X, Tian Y, Kong X, Zhang J, Zuo W, Ye X, Sun K (2015) Int J Hydrog Energy 40:16484–16493

    Article  CAS  Google Scholar 

  26. Qiao J, Zhang N, Wang Z, Mao Y, Sun K, Yuan Y (2009) Fuel Cells 9:729–739

    Article  CAS  Google Scholar 

  27. Lin Y, Zhan Z, Liu J, Barnett SA (2005) Solid State Ionics 176:1827–1835

    Article  CAS  Google Scholar 

  28. Lin Y, Zhan Z, Barnett SA (2006) J Power Sources 158:1313–1316

    Article  CAS  Google Scholar 

  29. Zhu H, Colclasure AM, Kee RJ, Lin Y, Barnett SA (2006) J Power Sources 161:413–419

    Article  CAS  Google Scholar 

  30. Bierschenk DM, Pillai MR, Lin Y, Barnett SA (2010) Fuel Cells 10:1129–1134

    Article  CAS  Google Scholar 

  31. Rosensteel WA, Babiniec SM, Storjohann DD, Persky J, Sullivan NP (2012) J Power Sources 205:108–113

    Article  CAS  Google Scholar 

  32. Panthi D, Tsutsumi A (2013) ECS Trans 57:789–798

    Article  Google Scholar 

  33. Panthi D, Tsutsumi A (2014a) Sci Rep 4:5754

    Article  CAS  Google Scholar 

  34. Panthi D, Choi B, Tsutsumi A (2015a) Int J Hydrog Energy 40:10588–10595

    Article  CAS  Google Scholar 

  35. Panthi D, Choi B, Tsutsumi A (2015b) J Electrochem Soc 162:F1555–F1560

    Article  CAS  Google Scholar 

  36. Panthi D, Tsutsumi A (2014b) J Solid State Electrochem 18:1899–1905

    Article  CAS  Google Scholar 

  37. Huang B, Ye XF, Wang SR, Nie HW, Shi J, Hu Q, Qian JQ, Sun XF, Wen TL (2006) J Power Sources 162:1172–1181

    Article  CAS  Google Scholar 

  38. Wang W, Ran R, Su C, Guo Y, Farrusseng D, Shao Z (2013a) J Power Sources 240:232–240

    Article  CAS  Google Scholar 

  39. Koh JH, Yoo YS, Park JW, Lim HC (2002) Solid State Ionics 149:157–166

    Article  CAS  Google Scholar 

  40. Liu J, Barnett SA (2003) Solid State Ionics 158:11–16

    Article  CAS  Google Scholar 

  41. Kendall K, Finnerty CM, Saunders G, Chung JT (2002) J Power Sources 106:323–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI (Grant Number 15H04250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthi, D., Choi, B. & Tsutsumi, A. Direct methane operation of a micro-tubular solid oxide fuel cell with a porous zirconia support. J Solid State Electrochem 21, 255–262 (2017). https://doi.org/10.1007/s10008-016-3366-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3366-5

Keywords

Navigation