Skip to main content
Log in

MADE3D: Enabling the next generation of high-torque density wind generators by additive design and 3D printing

MADE3D: Ermöglichung der nächsten Generation von Windgeneratoren mit hoher Drehmomentdichte durch additives Design und 3D‑Druck

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Direct-drive wind turbine generators are increasing in popularity, thanks to recent project developments—especially offshore, where reliability and efficiency are major cost drivers. Yet, high capital costs are forcing many original equipment manufacturers to consider lightweight, high-torque density generators for next-generation multi-megawatt turbines that may be difficult to realize by traditional design or manufacturing methods. In this study, we present a new design framework enabled by advanced machine learning and multimaterial additive manufacturing to perform a magnetic topology optimization that maximizes the torque per rotor active mass for a 15-megawatt direct-drive permanent magnet wind generator. A comparison of the proposed approach against conventional topology optimization demonstrated a significant increase in computational efficiency and accuracy in performance predictions. Results using single and multimaterial compositions for rotor core and magnets identify a wider choice of 3D printable designs for a given specification. A hybrid combination of sintered and dysprosium-free polymer-bonded magnets shows good potential for torque performance by saving material costs up to 8.75%. More than 30% improvement in rotor torque densities is identified which can marginally improve the overall generator torque density. With the rapid evolution of multipowder deposition technolgies, this study can greatly inspire a new paradigm for design-driven manufacturing with novel material compositions and lightweight, low-cost, high-strength multimaterial geometries that were previously unexplored for direct-drive generators.

Zusammenfassung

Windkraftanlagen mit Direktantrieb werden dank der jüngsten Projektentwicklungen immer beliebter – insbesondere im Offshore-Bereich, wo Zuverlässigkeit und Effizienz die Hauptkostentreiber sind. Die hohen Kapitalkosten zwingen jedoch viele Erstausrüster dazu, leichte Generatoren mit hoher Drehmomentdichte für Multi-Megawatt-Turbinen der nächsten Generation in Betracht zu ziehen, die mit herkömmlichen Konstruktions- oder Herstellungsverfahren möglicherweise schwer zu realisieren sind. In dieser Studie stellen wir ein neues Design-Framework vor, das durch fortschrittliches maschinelles Lernen und additive Fertigung aus mehreren Materialien eine Optimierung der magnetischen Topologie ermöglicht, die das Drehmoment pro aktiver Rotormasse für einen 15-Megawatt-Permanentmagnet-Windgenerator mit Direktantrieb maximiert. Ein Vergleich des vorgeschlagenen Ansatzes mit der herkömmlichen Topologieoptimierung zeigte eine signifikante Steigerung der Recheneffizienz und Genauigkeit bei Leistungsvorhersagen. Ergebnisse unter Verwendung von Einzel- und Multimaterialzusammensetzungen für Rotorkern und Magnete identifizieren eine größere Auswahl an 3D-druckbaren Designs für eine bestimmte Spezifikation. Eine Hybridkombination aus gesinterten und dysprosiumfreien polymergebundenen Magneten zeigt ein gutes Potenzial für die Drehmomentleistung, indem Materialkosten von bis zu 8,75 % eingespart werden. Es wurde eine Verbesserung der Rotordrehmomentdichten um mehr als 30 % festgestellt, was die Gesamtdrehmomentdichte des Generators geringfügig verbessern kann. Mit der rasanten Entwicklung der Mehrpulver-Abscheidungstechnologien kann diese Studie ein neues Paradigma für die designorientierte Fertigung mit neuartigen Materialzusammensetzungen und leichten, kostengünstigen und hochfesten Multimaterialgeometrien inspirieren, die bisher für Generatoren mit Direktantrieb noch nicht erforscht waren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. DfAM refers to a design method whereby functional performance, manufacturability, and cost can be optimized to the capabilities of AM technologies [27].

References

  1. Gerdes J US energy department wants to see lighter offshore wind turbines. https://www.greentechmedia.com/articles/read/us-energy-department-wants-to-see-lighter-offshore-wind-turbines. Accessed 24 Nov 2020

  2. Naschert C Global shortage of installation vessels could trouble waters for offshore wind, S&P Global market intelligence. https://www.spglobal.com/marketintelligence/en/news-insights/trending/LPC6P4u-UC9qVTTB4V05Cg2. Accessed 21 Nov 2020

  3. Barter G, Mendoza N, Sethuraman L, Keller J, Bennion K, Kekelia B, Cousineau E, Feng X, Kotecha R, Narumanchi S (2020) Advanced next-generation high-efficiency lightweight wind turbine generator analysis. NREL/TP-5000-77516. National Renewable Energy Laboratory,

    Google Scholar 

  4. Li H, Chen Z, Polinder H (2008) Research report on numerical evaluation of various variable speed wind generator systems. Upwind Deliverable No.: D 1B2.b.3

    Google Scholar 

  5. Sethuraman L, Dykes K (2017) GeneratorSE: a sizing tool for variable-speed wind turbine generator. Technical Report NREL/TP-5000-66462

    Book  Google Scholar 

  6. McDonald A, Bhuiyan NA (2016) On the optimization of generators for offshore direct drive wind turbines. IEEE Trans Energy Convers 32(1):348–358.

    Article  Google Scholar 

  7. Lei G, Zhu J, Guo Y, Liu C, Ma B (2017) A Review of design optimization methods for electrical machines. Energies 10:1962

    Article  Google Scholar 

  8. Bhuiyan NA, McDonald A (2019) Optimization of offshore direct drive wind turbine generators with consideration of permanent magnet grade and temperature. IEEE Trans Energy Convers 34(2):1105–1114

    Article  Google Scholar 

  9. Chen Y, Pillay P (2005) Axial-flux PM wind generator with a soft magnetic composite core. In: Fourtieth IAS annual meeting. Conference record of the 2005 industry applications conference Hong Ko

    Google Scholar 

  10. Lamichane TN, Sethuraman L, Dalagan A, Wang H, Keller J, Paranthaman M (2020) P.: Additive manufacturing of soft magnets for electrical machines—a review. Materials today physics, vol 15

    Google Scholar 

  11. Sato T, Watanabe K, Igarashi H (2015) Multimaterial topology optimization of electric machines based on normalized gaussian network. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2014.2359972

    Article  Google Scholar 

  12. Sato S, Sato T, Igarashi H (2015) Topology optimization of synchronous reluctance motor using normalized gaussian network. IEEE Trans Magn 51(3):1–4

    Google Scholar 

  13. Watanabe K, Suga T, Kitabatake S (2018) Topology optimization based on the ON/OFF method for synchronous motor. IEEE Trans Magn 54(3):1–4

    Article  Google Scholar 

  14. Okamoto Y, Hoshino R, Wakao S, Tsuburaya T (2018) Improvement of torque characteristics for a synchronous reluctance motor using MMA-based topology optimization Method. IEEE Trans Magn 54(3):1–4

    Article  Google Scholar 

  15. Sato T, Fujita M (2019) A topology optimization method for electric machines and devices through submodular maximization. Electron Commun Jpn 102(6):3–11

    Article  Google Scholar 

  16. Risticevic M, Moeckel A (2020) Topological approach for minimization of cogging torque in permanent magnet synchronous motors. Eur J Electr Eng 22(2):97–91

    Article  Google Scholar 

  17. Kirschneck M, Polinder H, Van Ostayen RAJ, Van Kempen FCM, Rixen DJ (2015) Design of direct-drive wind turbine electrical generator structures using topology optimization techniques. 11thWorld Congress on Structural and Multidisciplinary Optimization,, Sydney

    Google Scholar 

  18. Hayes AC, Sethuraman L, Fingersh LJ, Dykes K (2018) Additive Manufacturing: A new paradigm for the next generation of high-power-density direct-drive electric generators. In: Proceedings of the ASME 2018 Power Conference Student Competition. Lake Buena Vista,

    Google Scholar 

  19. Jaen-Sola P, Mc Donald AS, Oterkus E (2020) Design of direct-drive wind turbine electrical generator structures using topology optimization techniques. J Phys: Conf Ser 1618 052009. https://doi.org/10.1088/1742-6596/1618/5/052009

    Article  Google Scholar 

  20. Doi S, Sasaki H, Igarashi H (2019) Multi-objective topology optimization of rotating machines using deep learning. IEEE Trans Magn 55(6):7202605. https://doi.org/10.1109/TMAG.2019.2899934

    Article  Google Scholar 

  21. Wrobel R, Mecrow B (2020) A Comprehensive review of additive manufacturing in construction of electrical machines. IEEE Trans Energy Convers. https://doi.org/10.1109/TEC.2020.2964942

    Article  Google Scholar 

  22. Wu F, EL-Refaie AM (2019) Towards fully additively manufactured permanent magnet synchronous machines: opportunities and challenges. 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego

    Google Scholar 

  23. Popov V, Koptyug A, Radulov I, Maccari F, Muller G (2018) Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets. Proc Manuf 21:100–108

    Google Scholar 

  24. Volegov AS, Andreev SV, Selezneva NV, Ryzhikhin IA, Kudrevatykh NV, Meadler L, Okulov IV (2020) Additive manufacturing of heavy rare earth free high-coercivity permanent magnets. Acta Mater 188:733–739

    Article  Google Scholar 

  25. Gandha K, Nlebedim IC, Kunc V, Lara-Curzio E, Fredette F, Paranthaman MP (2020) Additive manufacturing of highly dense anisotropic Nd–Fe–B bonded magnets. Scr Mater 183:91–95

    Article  Google Scholar 

  26. Bernier F, Maged I, Mihaela M, Yannig T, Lamarre JM (2020) Additive manufacturing of soft and hard magnetics materials used in electrical machines. Met Powder Rep. https://doi.org/10.1016/j.mprp.2019.12.002

    Article  Google Scholar 

  27. Yunlong T, Zhao YF (2016) A survey of the design methods for additive manufacturing to improve functional performance. Rapid Prototyp J 22(3):569–590

    Article  Google Scholar 

  28. Ibrahim M, Bernier F, Lamarre J‑M (2020) Novel multi-layer design and additive manufacturing fabrication of a high power density and efficiency interior PM motor. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp 3601–3606

    Google Scholar 

  29. McGarry C, McDonald AS, Alotaibi N (2019) Optimization of additively manufactured permanent magnets for wind turbine generators. 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego

    Google Scholar 

  30. Wang C, Tan XP, Tor SB, Lim CS (2020) Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101538

    Article  Google Scholar 

  31. Sasaki H, Igarashi H (2019) Topology optimization of IPM motor with aid of deep learning. Int J Aappl Electromagn Mech 59(1):87–96

    Article  Google Scholar 

  32. Hidenori S, Igarashi H (2019) Topology optimization accelerated by deep learning. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2019.2901906

    Article  Google Scholar 

  33. Asanuma J, Doi S, Igarashi H (2020) Transfer learning through deep learning: application to topology optimization of electric motor. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2019.2956849

    Article  Google Scholar 

  34. Chen CT, Gu GX (2020) Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv Sci. https://doi.org/10.1002/advs.201902607

    Article  Google Scholar 

  35. Gaertner E, Rinker J, Sethuraman L, Zahle F, Anderson B, Barter G, Abbas N, Meng F, Bortolotti P, Skrzypinski W, Scott G, Feil F, Bredmose H, Dykes K, Shields M, Allen C, Viselli A (2020) Definition of the IEA 15-megawatt offshore reference wind turbine, national renewable energy laboratory. NREL/TP-5000-75698

    Google Scholar 

  36. Optimization of electric motors and generators with additive manufacturing (MADE3D). https://www.labpartnering.org/lab-technologies/6ebf5c69-dc94-4393-a2e7-49042e16502d. Accessed 23 Nov 2020

  37. https://www.altair.com/flux/. Accessed 23 Nov 2020

  38. Fluxtrol 100 data sheet. https://fluxtrol.com/inc/pdf/Fluxtrol-100-Specs.pdf. Accessed 28 Nov 2020

  39. Design of experiments with hyperstudy—a study guide. https://altairuniversity.com/thank-you-free-ebook-design-of-experiments-with-hyperstudy-a-study-guide/?submissionGuid=0fae75dd-bc8f-4087-8d70-dc3763e0b519. Accessed 21 Nov 2020

  40. Pajot J (2013) Optimal design exploration using global response surface method: rail crush, altair hyperworks white paper

    Google Scholar 

  41. Manninen A, Keränen J, Pippuri-Mäkeläinen J, Riipinen T, Metsä-Kortelainen S, Lindroos T (2019) Impact of topology optimization problem setup on switched reluctance machine design. 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG),, Paris

    Book  Google Scholar 

  42. Aerosint How to make cheap, scalable multi-material 3D printing a reality. https://aerosint.com/how-to-make-cheap-scalable-multi-material-3d-printing-a-reality/,last. Accessed 24 Nov 2020

  43. China’s exports of NdFeB magnets increased 11% in 2018. https://www.adamasintel.com/china-ndfeb-exports-increased-2018/. Accessed 27 Dec 2020.

  44. Al-Qarni A, Wu F, El-Refaie A (2019) High-torque-density low-cost magnetic gear utilizing hybrid magnets and advanced materials. 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego. Wor CA, USA, pp 225–232

Download references

Acknowledgements

The authors gratefully acknowledge Mohammed Elamin and Eric Chavez from Altair for software support and troubleshooting. This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Contributions

Latha Sethuraman led the research idea, designed and performed the numerical simulations, generated design data, performed regression-based optimizations, analyzed the results and wrote the manuscript; Ganesh Vijayakumar and Shreyas Ananthan developed the ML implementations within MADE3D-AML software; Ganesh Vijayakumar performed ML-based optimizations; Parans Paranthaman provided technical inputs on material selection and manufacturing; Jonathan Keller helped supervise the project and provide comments; and Ryan King provided technical inputs to improving the ML-based optimization. Thanks are also due to Garrett Barter for WISDEM modeling and his inputs on cost sensitivity.

Corresponding author

Correspondence to Latha Sethuraman.

Appendix

Appendix

Fig. 18
figure 18

Accuracy of fitness models for single-material case—rotor core obtained by regression and MADE3D-AML

Fig. 19
figure 19

A comparison of accuracy of fitness models for multimaterial case—rotor core obtained by regression and MADE3D-AML

Fig. 20
figure 20

A comparison of accuracy of fitness models for single material case—magnets obtained by regression and MADE3D-AML

Fig. 21
figure 21

A comparison of accuracy of fitness models for multimaterial case—magnets obtained by regression and MADE3D-AML

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethuraman, L., Vijayakumar, G., Ananthan, S. et al. MADE3D: Enabling the next generation of high-torque density wind generators by additive design and 3D printing. Forsch Ingenieurwes 85, 287–311 (2021). https://doi.org/10.1007/s10010-021-00465-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00465-y

Navigation