Skip to main content

Advertisement

Log in

Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain

Estimation de l’impact du future changement climatique sur la recharge en eau souterraine en Galice, Espagne

Evaluación del impacto del cambio climático futuro en la recarga de agua subterránea en la Galicia Costa, España

评价未来气候变化对西班牙Galicia-Costa地下水补给的影响

Avaliação do impacte das alterações climáticas futuras na recarga de água subterrânea na Galicia Costa, Espanha

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Climate change can impact the hydrological processes of a watershed and may result in problems with future water supply for large sections of the population. Results from the FP5 PRUDENCE project suggest significant changes in temperature and precipitation over Europe. In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess the potential impacts of climate change on groundwater recharge in the hydrological district of Galicia-Costa, Spain. Climate projections from two general circulation models and eight different regional climate models were used for the assessment and two climate-change scenarios were evaluated. Calibration and validation of the model were performed using a daily time-step in four representative catchments in the district. The effects on modeled mean annual groundwater recharge are small, partly due to the greater stomatal efficiency of plants in response to increased CO2 concentration. However, climate change strongly influences the temporal variability of modeled groundwater recharge. Recharge may concentrate in the winter season and dramatically decrease in the summer–autumn season. As a result, the dry-season duration may be increased on average by almost 30 % for the A2 emission scenario, exacerbating the current problems in water supply.

Résumé

Le changement de climat peut affecter les processus hydrologiques d’un bassin versant et peut avoir comme conséquence des problèmes d’approvisionnement en eau futur pour une grande part de la population. Les résultats du projets PRUDENCE du 5ème PCRD prédisent des changements significatifs de température et de précipitation en Europe. Dans cette étude le modèle SWAT (Soil and Water Assessment) a été utilisé pour estimer les impacts potentiels du changement climatique sur la recharge de l’eau souterraine dans la province de Galicia-Costa, en Espagne. Les projections climatiques à partir de deux modèles de circulation générale et huit modèles climatiques régionaux différents ont été utilisés pour l’estimation et deux scénarios de changement climatique ont été évalués. Le calage et la validation du modèle ont été réalisés au pas de temps journalier sur quatre bassins versants représentatifs de la province. Les effets sur la recharge moyenne annuelle modélisée sont faibles, en partie à cause de la plus grande efficacité stomatale des plantes résultant de l’augmentation des concentrations en gaz carbonique. Néanmoins le changement climatique influence la variabilité temporelle de la recharge modélisée. La recharge peut se concentrer en hiver et diminuer brutalement en été et automne. En conséquence, la durée de la saison sèche peut être augmentée en moyenne de presque 30% pour le scénario d’émission A2, exacerbant les problèmes actuels dans l’approvisionnement en eau.

Resumen

El cambio climático puede impactar en los procesos hidrológicos de una cuenca y puede producir problemas con el futuro abastecimiento de agua para grandes sectores de la población. Los resultados del proyecto FP5 PRUDENCE sugieren cambios significativos en la temperatura y precipitación sobre Europa. En este estudio, se utilizó el modelo Soil and Water Assessment Tool (SWAT) para evaluar los impactos potenciales del cambio de clima en la recarga de agua subterránea en el distrito hidrológico de Galicia Costa, España. Se utilizaron las proyecciones climáticas a partir de dos modelos generales de circulación y ocho diferentes modelos climáticos regionales para la evaluación y se asignaron dos escenarios de cambios climáticos. La calibración y la validación del modelo se llevaron a cabo usando un paso de tiempo diario en cuatro cuencas representativas en el distrito. Los efectos en la recarga anual media del agua subterránea modelada son pequeños, en parte debido a la mayor eficiencia de los estomas de las plantas en respuestas al incremento de la concentración de CO2. Sin embargo, el cambio climático influye fuertemente en la variabilidad de la recarga del agua subterránea modelada. La recarga se puede concentrar en la estación invernal y disminuir dramáticamente en la estación del verano – otoño. Como un resultado, la duración de la estación seca puede ser incrementada en promedio en casi un 30 % para el escenario A2 de emisión, exacerbando los problemas actuales en el abastecimiento de agua.

摘要

气候变化能够影响流域的水文过程,还可能导致大部分人口的未来供水出现问题。FP5 PRUDENCE 项目结果指出欧洲的气温和降雨变化非常大。在本次研究中,利用土壤和水评价工具(SWAT)模型来评价气候变化对西班牙Galicia-Costa 水文区地下水补给的潜在影响。利用从两个一般的循环模型和八个不同的区域气候模型得出的气候变化预测结果来进行评价,最终评估了两个气候变化方案。在水文区的四个代表性流域,以一天为时间步长对模型进行了校准和确认。对模拟的年平均地下水补给量影响较小,部分原因是由于在CO2 浓度增加时植物有了更高的气孔效率。然而,气候变化对模拟的地下水补给随时间的变化有显著的影响。地下水补给在冬季比较集中,在夏秋季会显著的下降。因此,在A2排放方案下,旱季持续的时间可能会平均增加近30 %,加剧了目前的供水问题。

Resumo

As alterações climáticas podem ter impactes nos processos hidrológicos de uma bacia hidrográfica e podem resultar em problemas para o abastecimento futuro de água a largos setores da população. Resultados do projeto FP5 PRUDENCE sugerem alterações significativas na temperatura e na precipitação sobre a Europa. Neste estudo, o modelo SWAT (Ferramenta de Avaliação Solo e Água) foi usado para avaliar os impactes potenciais das alterações climáticas na recarga de água subterrânea no distrito hidrológico de Galicia-Costa, Espanha. As projeções climáticas de dois modelos de circulação geral e oito diferentes modelos climáticos regionais foram usados para os estudos e dois cenários de alterações climáticas foram avaliados. A calibração e validação do modelo foram executadas usando um tempo sequencial diário em quatro bacias representativas no distrito. Os efeitos na recarga média anual da água subterrânea modelada são pequenos, em parte devido à maior eficácia estomática das plantas em resposta ao aumento da concentração de CO2. No entanto, as alterações climáticas influenciam fortemente a variabilidade temporal da recarga de água subterrânea modelada. A recarga pode concentrar-se na estação invernal e decrescer dramaticamente nas estações de verão-outono. Como resultado, a duração da estação seca pode ser incrementada, em média, em cerca de 30 % para o cenário de emissão A2, exacerbando os problemas atuais de abastecimento de água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430

    Article  Google Scholar 

  • Agencia Estatal de Meteorología (AEMet) (2009) Generación de escenarios regionalizados de cambio climático para España [Generation of regionalized scenarios of climate change for Spain]. Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid. Available online: http://escenarios.inm.es. Accessed in February 2011

  • Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57:963–974

    Article  Google Scholar 

  • Ali R, McFarlane D, Varma S, Dawes W, Emelyanova I, Hodgson G (2012) Potential climate change impacts on the water balance of regional unconfined aquifer systems in South-Western Australia. Hydrol Earth Syst Sci Discuss 9:6367–6408

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, Rome

    Google Scholar 

  • Allen DM, Cannon AJ, Toews MW, Scibek J (2010) Variability in simulated recharge using different GCMs. Water Resour. Res. 46, W00F03, 18 pp. doi:10.1029/2009WR008932

  • Arnold JG, Allen PM (1996) Estimating hydrologic budgets for three Illinois watersheds. J Hydrol 176:57–77

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Allen PM (1999) Continental scale simulation of the hydrologic balance. J Am Water Resour Assoc 35(5):1037–1051

    Article  Google Scholar 

  • Ayraud V, Aquilina L, Labasque T, Pauwels H, Molenat J, Pierson-Wickmann AC, Durand V, Bour O, Tarits C, Le Corre P, Fourre E, Pj M, Davy P (2008) Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses. Appl Geochem 23:2686–2707

    Article  Google Scholar 

  • Band L, Mackay D, Creed I, Semkin R, Jeffries D (1996) Ecosystem processes at the watershed scale: sensitivity to potential climate change. Limnol Oceanogr 41(5):928–938

    Article  Google Scholar 

  • Bande-Castro MJ, Argamentería A, Campo L, Mangado Urdániz JM, Martínez-Martínez A, Martínez-Fernández A, De La Roza B, Moreno-González J (2010) Cultivo experimental de maíz forrajero en la Cornisa Cantábrica [Experimental cultivation of forage maize in the Cantabrian Coast]. Vida Rural 303:24–29

    Google Scholar 

  • Barthel R, Reichenau TG, Krimly T, Dabbert S, Schneider K, Mauser W (2012) Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour Manag 26:1929–1951. doi:10.1007/s11269-012-0001-9

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. IPCC technical paper, IPCC, Geneva, 210 pp

    Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27(12):1643–1655

    Article  Google Scholar 

  • Bouraoui F, Grizzetti B, Granlund K, Rekolainen S, Bidoglio G (2004) Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Clim Chang 66(1–2):109–126

    Article  Google Scholar 

  • Candela L, von Igel W, Elorza FJ, Aronica G (2009) Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). J Hydrol 376:510–527

    Article  Google Scholar 

  • Carpenter S, Fisher S, Grimm N, Kitchell JF (1992) Global change and freshwater ecosystems. Ann Rev Ecolog Syst 23:119–137

    Article  Google Scholar 

  • Castro M, Fernández C, Gaertner MA (1993) Description of a meso-scale atmospheric numerical model. In: Díaz JI, Lions JL (eds) Mathematics, climate and environment. Masson, Issy les Moulineaux, France

  • Chang H, Evans B, Easterling D (2001) Effects of climate change on stream flow and nutrient loading. J Am Water Resour Assoc 37(4):973–986

    Article  Google Scholar 

  • Chaplot V (2007) Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. J Hydrol 337(1–2):159–171

    Article  Google Scholar 

  • Chen Z, Grasby SE, Osadetz KG (2002) Predicting average annual groundwater levels from climatic variables: an empirical model. J Hydrol 260:102–117

    Article  Google Scholar 

  • CHESS (2001) Climate, hydrochemistry and economics of surface-water systems. EC Environment and Climate Research Programme (Contract no. ENV4-CT-97-0440), 2001. Available at www.nwl.ac.uk/ih/www/research/images/chessreport.pdf. Accessed March 2012

  • Christensen JH, Christensen OB, López P, Van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model, DMI technical report 96–4. DMI, Copenhagen

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chang 81(Suppl):1–6

    Article  Google Scholar 

  • Clilverd HM, White DM, Tidwell AC, Rawlins MA (2011) The sensitivity of northern groundwater recharge to climate change: a case study in northwest Alaska. J Am Water Resour Assoc 47(6):1228–1240

    Article  Google Scholar 

  • Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18:1639–1656

    Article  Google Scholar 

  • Custodio E, Manzano M, Escaler I (2007) Aquifer recharge and global change: application to Doñana. In: Sousa A, García-Barrón L, Jurado V (eds) El cambio climático en Andalucía: evolución y consecuencias medioambientales. Consejería de Medio Ambiente (Junta de Andalucía), Seville, Spain, pp 121–140

  • Defourny P, Hecquet G, Philippart T (1999) Digital terrain modeling: accuracy assessment and hydrological simulation sensitivity. In: Lowell K, Jaton A (eds) Spatial accuracy assessment: land information uncertainty in natural resources. Chelsea, Ann Arbor, MI, 323 pp

    Google Scholar 

  • Dewandel B, Lachassagne P, Wyns R, Maréchal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284

    Article  Google Scholar 

  • Di Luzio M, Srinivasan R, Arnold JG, Neitsch S (2002) ArcView Interface for SWAT 2000 User’s Guide. Blackland Research Center, Texas Agricultural Experiment Station, Temple, TX. Available at http://www.brc.tamus.edu/swat/downloads/doc/swatav2000.pdf. Accessed December 2011

  • Döscher R, Willén U, Jones CG, Rutgersson A, Meier H, Hansson E, Graham M (2002) The development of the coupled regional ocean atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  • Durand V, Deffontaines B, Leonardi V, Guerin R, Wyns R, de Marsily G, Bonjour JL (2006) A multidisciplinary approach to determine the structural geometry of hard-rock aquifers: application to the Plancoet migmatic aquifer (NE Brittany, W France). Bull Soc Geol Fr 177:227–236

    Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  Google Scholar 

  • Essink GHPO, Van Baaren ES, De Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46(10):W00F04, 16 pp. doi:10.1029/2009WR008719

    Article  Google Scholar 

  • European Environment Agency (2007) CORINE Land Cover 2000 Project version 9/2007. Available at http://www.eea.europa.eu Accessed February 2011

  • Evans B, Lehning D, Corradini K, Petersen G, Nizeyimana E, Hamlett J, Robillard P, Day R (2003) A comprehensive GIS-based modeling approach for predicting nutrient loads in watersheds. J Spatial Hydrol 2(2):1–18

    Google Scholar 

  • FAO (1990) Guidelines for soil description, 3rd edn. Food and Agricultural Organization, Rome

    Google Scholar 

  • Ferrer Julia M, Estrela MT, Sanchez JA, Garcia M (2004) Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma 123(3–4):257–277

    Article  Google Scholar 

  • Ficklin DL, Luo Y, Luedeling E, Zhang M (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J Hydrol 374:16–29

    Article  Google Scholar 

  • Field C, Jackson R, Mooney H (1995) Stomatal responses to increased CO2: implications from the plant to the global-scale. Plant Cell Environ 18:1214–1255

    Article  Google Scholar 

  • Fowler HJ, Blenkinsopa S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Franco Bastianelli S (2010) Estudio sobre las posibles causas de los daños en las edificaciones de un área del casco urbano de Ponteceso [Study on the possible causes of the damage to buildings in the urban area of Ponteceso]. Technical report, INGEBAIRES, Vigo, 2010. Available at http://www.ponteceso.net/informe/informefinal.pdf. Accessed March 2012

  • García-Corona R, Benito E, de Blas E, Varela ME (2004) Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. Int J Wildland Fire 13(2):195–199

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50:1211–1250

    Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dynam 20:327–339

    Google Scholar 

  • Goderniaux P, Brouyère S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373:122–138

    Article  Google Scholar 

  • González-Prieto SJ, Villar MC, Carballas M, Carballas T (1992) Nitrogen mineralization and its controlling factors in various kinds of temperate humid-zone soils. Plant Soil 144:31–44

    Article  Google Scholar 

  • Green TR, Bates BC, Charles SP, Fleming PM (2007) Physically based simulation of potential effects of carbon dioxide-altered climates on groundwater recharge. Vadose Zone J 63:597–609

    Article  Google Scholar 

  • Green TR, Taniguchib M, Kooic H, Gurdakd JJ, Allene DM, Hiscock KM, Treidelg H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560

    Article  Google Scholar 

  • Guardiola-Albert C, Jackson CR (2011) Potential impacts of climate change on groundwater supplies to the Doñana wetland, Spain. Wetlands 31:907–920

    Article  Google Scholar 

  • Hendricks Franssen HJ (2009) The impact of climate change on groundwater resources. Int J Clim Chang Strateg Manag 1:241–254

    Article  Google Scholar 

  • Herrera-Pantoja M, Hiscock KM (2008) The effects of climate change on potential groundwater recharge in Great Britain. Hydrol Process 22:73–86

    Article  Google Scholar 

  • Hiscock K, Sparkes R, Hodgens A (2012) Evaluation of future climate change impacts on European groundwater resources. In: Treidel H, Martin-Bordes JJ, Gurdak JJ (eds) Climate change effects on groundwater resources: a global synthesis of findings and recommendations.IAH International Contributions to Hydrogeology, Taylor and Francis, London, pp 351–366

  • Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2011) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20:1–4

    Article  Google Scholar 

  • Hsu KC, Wang CH, Chen KC, Chen CT, Ma KW (2007) Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol J 15:903–913

    Article  Google Scholar 

  • Hudson DA, Jones RG (2002) Regional climate model simulations of present-day and future climates of southern Africa. Technical note no. 39, Hadley Centre Met Office, Exeter, UK

  • IGME (2004) Cartografía Geológica Continua Digital de España (GEODE) 1:50000 [Digital Geological Map of Spain]. IGME, Madrid

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate Change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J Hydrol 399:12–28

    Article  Google Scholar 

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jha M, Arnold JG, Gassman PW, Gu R (2006) Climate change sensitivity assessment on upper Mississippi River basin streamflows using SWAT. J Am Water Resour Assoc 42(4):997–1016

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338:237–250

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Kovalevskii VS (2007) Effect of climate changes on groundwater. Water Resour 34(2):140–152

    Article  Google Scholar 

  • Krause P, Boyle D, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Article  Google Scholar 

  • Lachassagne P, Wyns R, Bérard P, Bruel T, Chéry L, Coutand T, Desprats JF, Le Strat P (2001) Exploitation of high-yield in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water 39:568–581

    Article  Google Scholar 

  • Leirós MC, Trasar-Cepeda C, Seoane S, Gil-Sotres F (2000) Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): general parameters. Soil Biol Biochem 32:733–745

    Article  Google Scholar 

  • Lenderink G, Van Den Hurk B, Van Meijgaard E, Van Ulden A, Cuijpers H (2003) Simulation of present day climate in RACMO2: first results and model developments, KNMI Technical Report 252, KNMI, De Bilt, The Netherlands, 24 pp

  • Leung LR, Qian Y, Bian X, Hunt A (2003) Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000, part II: mesoscale ENSO anomalies. J Climate 16:1912–1928

    Article  Google Scholar 

  • Loaiciga HA (2009) Long-term climatic change and sustainable ground water resources management. Environ Res Lett 4:035004. doi:10.1088/1748-9326/4/3/035004

    Article  Google Scholar 

  • Manzano M, Custodio E, Cardoso da Silva G, Lambán J (1998) Modelación del efecto del cambio climático sobre la recarga en dos acuíferos carbonatados del área mediterránea [Modeling the effect of climate change on the recharge in two carbonate aquifers in the Mediterranean area]. Proc. 4º Congreso Latinoamericano de Hidrología Subterránea, vol 1, Montevideo, Uruguay, November 1998, pp 322–333

  • Maréchal JC, Dewandel B, Subrahmanyam K (2004) Contribution of hydraulic tests at different scales to characterize fracture network properties in the weathered-fissured layer of a hard rock aquifer. Water Resour Res 40:W11508

    Article  Google Scholar 

  • Marshall E, Randhir T (2008) Effect of climate change on watershed system: a regional analysis. Clim Chang 89:263–280

    Article  Google Scholar 

  • Morison JIL, Gifford RM (1983) Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol 71:789–796

    Article  Google Scholar 

  • Nash JE, Sutcliffe J (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool theoretical documentation, Version 2000. Blackland Research Center, Texas Agricultural Experiment Station, Temple, TX. Available at http://www.brc.tamus.edu/swat/downloads/doc/swat2000theory.pdf. Accessed June 2010

  • Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2004) Soil and water assessment tool. Input/output file documentation. Version 2005. Blackland Research Center, Texas Agricultural Experiment Station, Temple, TX. Available at http://swatmodel.tamu.edu/media/1291/swat2005io.pdf. Accessed December 2011

  • Neukum C, Azzam R (2012) Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeol J 20:547–560

    Article  Google Scholar 

  • Obuobie E, Diekkrügerb B (2008) Using SWAT to Evaluate Climate Change Impact on Water Resources in the White Volta River Basin, West Africa. In: Tropentag 2008: Conference on International Research on Food Security, Natural Resource Management and Rural Development. Stuttgart, Germany, October 7–9, 2008

  • Okkonen J (2011) Groundwater and its response to climate variability and change in cold snow dominated regions in Finland: methods and estimations. PhD Thesis, University of Oulu, Finland. Available at http://herkules.oulu.fi/isbn9789514297014/isbn9789514297014.pdf. Accessed March 2012

  • Paz González A, Taboada Castro MT, Gómez Suarez MJ (1997) Relación entre textura, pH, materia orgánica y complejo de cambio en el horizonte superior de un suelo sobre serpentinas [Relationship between texture, pH, organic matter and complex change in the upper horizon of a soil on serpentine]. Caderno Lab Xeolóxico Laxe 22:5–14

    Google Scholar 

  • Quintana Seguí P, Ribes A, Martin E, Habets F, Boé J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383:111–124

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willén U (2004) European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Climate Dyn 22:13–31

    Article  Google Scholar 

  • Raposo JR, Molinero J, Dafonte J (2010) Quantitative evaluation of hydrogeological impact produced by tunnel construction using water balance models. Eng Geol 116:323–332

    Article  Google Scholar 

  • Raposo JR, Molinero J, Dafonte J (2012) Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain). Hydrol Earth Syst Sci 16:1667–1683

    Article  Google Scholar 

  • Romay D, Gañete M (2007) Las comunidades de usuarios de agua como ejemplo de autoabastecimiento en las cuencas de Galicia-Costa [The water user communities as an example of self-sufficiency in Galicia-Costa district]. In: Molinero J, Ortuño F, Valverde M, Lambán LJ (eds) Las aguas subterráneas en España ante las Directivas Europeas: retos y perspectivas. IGME, Madrid

    Google Scholar 

  • Rosenthal WD, Srinivasan R, Arnold JG (1995) Alternative river management using a linked GIS-hydrology model. Trans ASAE 38(3):783–790

    Google Scholar 

  • Saleh A, Arnold JG, Gassman PW, Hauck LM, Rosenthal WD, Williams JR, McFarland AMS (2000) Application of SWAT for the upper north Bosque River watershed. Trans ASAE 43(5):1077–1087

    Google Scholar 

  • Samper J (2003) Aguas subterráneas y medio ambiente en Galicia [Groundwater and environment in Galicia]. In: Casares JJ (Ed.). Reflexiones sobre el medio ambiente en Galicia. Consellería de Medio Ambiente, Xunta de Galicia, Santiago de Compostela, Spain, pp 231–249

  • Samper J, Alvares D, Pisani B, García MA (2007) Evaluación del efecto del cambio climático en los recursos hídricos en la cuenca hidrográfica del Ebro con GIS-Balan [Assessment of climate change effects on water resources in the Ebro basin with GIS-Balan]. In: Giráldez Cervera JV, Jiménez Hornero FJ (eds) Estudios de la Zona No Saturada del Suelo, vol VIII, CIALE, University of Salamanca, Salamanca, Spain, pp 347–353

  • Samper J, Li Y, Pisani B, Ribeiro L, Fakir Y, Stigter T (2009a) Evaluación de los impactos del cambio climático en los acuíferos de la Plana de la Galera y del aluvial de Tortosa [Assessment of climate change impact on the aquifers of Plan de la Galera and Tortosa alluvial]. In: Martínez Fernández J, Sánchez Martín N (eds) Estudios de la Zona No Saturada del Suelo vol X, pp 359–364

  • Samper J, Pisani B, Espinha Marques J (2009b) Estudio del flujo hipodérmico en zonas de montaña [Study of interflow in mountain areas]. In: Martínez Fernández J, Sánchez Martín N (eds) Estudios de la Zona No Saturada del Suelo vol X, pp 365–370

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Schuol J, Abbaspour KC, Srinivasan R, Yang H (2008a) Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J Hydrol 352(1–2):30–49

    Article  Google Scholar 

  • Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder AJB (2008b) Modelling blue and green water availability in Africa. Water Resour Res 44(W07406):18

    Google Scholar 

  • Scott CA, Megdal S, Oroz LA, Callegary J, Vandervoet P (2012) Effects of climate change and population growth on the transboundary Santa Cruz aquifer. Clim Res 51:159–170

    Article  Google Scholar 

  • Serrat-Capdevila A, Valdés JB, González Pérez J, Baird K, Mata LJ, Maddock T III (2007) Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). J Hydrol 347:48–66

    Article  Google Scholar 

  • SITGA (2010) Digital elevation model 50 m of Galicia. Available at http://sitga.xunta.es/cartografia/index.asp?ididioma=3&id_prod=8 Accessed February 2011

  • Soriano G, Samper J (2000) Hidrogeología de una pequeña cuenca piloto en medios graníticos en el norte de Galicia (cuenca del Valiñas, en La Coruña) [Hydrogeology of a small basin in granitic media in northern Galicia – Valiñas Basin, in La Coruña]. In: Samper J, Leitão T, Fernández L, Ribeiro L (eds) Las Aguas Subterráneas en el Noroeste de la Península Ibérica. IGME, Madrid, pp 73–82

    Google Scholar 

  • Soriano G, Samper J (2003) Monitoring and modelling water quantity and quality in a pilot catchment in north-western Spain. In: Verhoest N, Hudson J, Hoeben R, De Troch F (eds) Proceedings of “Monitoring and Modelling Catchment Water Quantity and Quality”. IHP-VI, Technical Documents in Hydrology, no. 66. UNESCO, Paris

  • Soto B, Rodríguez JA, Pérez R., Brea M.A., Díaz-Fierros F (2005) Cuantificación de la importancia del flujo procedente de la zona no saturada en el caudal de una pequeña cuenca forestal [Quantification of the importance of the interflow in the stream discharge in a small forest watershed]. In: Samper Calvete FJ, Paz González A (eds) Estudios de la Zona No Saturada del Suelo, vol VII, pp 333–336

  • Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Mesogamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96

    Article  Google Scholar 

  • Stockle CO, Williams JR, Rosenberg NJ, Jones CA (1992) A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: part 1: modification of the EPIC model for climate change analysis. Agr Syst 38:225–238

    Article  Google Scholar 

  • Stoll S, Hendricks Franssen HJ, Butts M, Kinzelbach W (2011) Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods. Hydrol Earth Syst Sci 15:21–38

    Article  Google Scholar 

  • Tietje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma 69(71–84):71–84

    Article  Google Scholar 

  • Treidel H, Martin-Bordes JJ, Gurdak JJ (2012) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. IAH International Contributions to Hydrogeology, Taylor and Francis, London, 414 pp

  • Van Griensven A (2005) Sensitivity, auto-calibration, uncertainty and model evaluation in SWAT2005. Available at http://biomath.ugent.be/∼ann/swat_manuals/SWAT2005_manual_sens_cal_unc.pdf. Accessed January 2012

  • Van Liedekerke M, Jones A, Panagos P (2006) ESDBv2 Raster Library: a set of rasters derived from the European Soil Database distribution v2.0. EUR 19945 EN, European Commission and the European Soil Bureau Network, Brussels, CD-ROM

  • Van Liew MW, Arnold JG, Bosch DD (2005) Problems and potential of autocalibrating a hydrologic model. Trans ASAE 48(3):1025–1040

    Google Scholar 

  • Verbeeten E, Barendregt A (2007) Assessing the impact of climate change on the water balance in semi-arid West Africa: a SWAT application. In: Probst F, Keßler C (eds) GI-Days 2007: Young Researchers Forum proceedings of the 5th Geographic Information Days, Munster, Germany, 10–12 September 2007, pp 309–312

  • Wegehenkel M, Kersebaum KC (2009) An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in northeast Germany. J Plant Nutr Soil Sci 172:737–744

    Article  Google Scholar 

  • Williams JR (1995) Chapter 25: the EPIC model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources, Highlands Ranch, CO, pp 909–1000

    Google Scholar 

  • Wyns R, Baltassat JM, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Geol Fr 175:21–34

    Google Scholar 

  • Xunta de Galicia (1991) Estudio de recursos de agua subterránea en Galicia [Study of groundwater resources in Galicia]. COTOP, Santiago de Compostela, Spain

    Google Scholar 

  • Xunta de Galicia (2003) Plan Hidrológico de Galicia Costa [Hydrological Plan of Galicia Costa]. Real Decreto 103/2003 del 24 de enero. Xunta de Galicia, Santiago de Compostela, Spain. Available in http://augasdegalicia.xunta.es/gl/1.2.htm. Accessed in February 2012

  • Xunta de Galicia (2005) Plan de Abastecimiento de Galicia [Galician Water Supply Plan]. Xunta de Galicia, Santiago de Compostela, Spain

  • Yang J, Reichert P, Abbaspour KC, Yang H (2007) Hydrological modelling of the Chaohe basin in China: statistical model formulation and Bayesian inference. J Hydrol 340:167–182

    Article  Google Scholar 

  • Younger PL, Teutsh G, Custodio E, Elliot T, Manzano M, Satuer M (2002) Assessments of the sensitivity to climate change of flow and natural water quality in four major carbonate aquifers of Europe. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Special Publication 193, Geological Society, London, pp 303–323

Download references

Acknowledgements

This work has been partially funded by the Galician government Xunta de Galicia, within the framework of research project INCITE09 203 072 PR and by the European Regional Development Fund (ERDF). The first author has been granted a F.P.U. fellowship by the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ramón Raposo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raposo, J.R., Dafonte, J. & Molinero, J. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain. Hydrogeol J 21, 459–479 (2013). https://doi.org/10.1007/s10040-012-0922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0922-7

Keywords

Navigation