Skip to main content

Advertisement

Log in

A quantitative approach for hydrological drought characterization in southwestern China using GRACE

Approche quantitative pour la caractérisation d’une sécheresse hydrologique dans le Sud-Ouest de la Chine en utilisant GRACE

Una aproximación cuantitativa para la caracterización de una sequía hidrológica usando GRACE en el suroeste de China

利用重力恢复与气候实验卫星任务(GRACE)研究中国西南地区水文干旱特性的定量方法

Uma abordagem quantitativa para caracterização de seca hidrológica no sudoeste da China usando GRACE

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A quantitative approach for hydrological drought characterization, based on non-seasonal water storage deficit data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite mission, is assessed. Non-seasonal storage deficit is the negative terrestrial water storage after deducting trend, acceleration and seasonal signals, and it is designated as a drought event when it persists for three or more continuous months. The non-seasonal water storage deficit is used for measuring the hydrological drought in southwestern China. It is found that this storage-deficit method clearly identifies hydrological drought onset, end and duration, and quantifies instantaneous severity, peak drought magnitude, and time to recovery. Moreover, it is found that severe droughts have frequently struck southwestern China in the past several decades, among which, the drought of 2011–2012 was the most severe; the duration was 10 months, the severity was −208.92 km3/month, and the time to recovery was 17 months. These results compare well with the National Climate Center of China drought databases, which signifies that the GRACE-based non-seasonal water storage deficit has a quantitative effect on hydrological drought characterization and provides an effective tool for researching droughts.

Résumé

Une approche quantitative pour la caractérisation d’une sécheresse hydrologique, basée sur les données non saisonnières de déficit hydrique, issues de la mission satellite de la NASA nommée GRACE (“Gravity Recovery And Climate Experiment”) est évaluée. Le déficit hydrique non saisonnier correspond à un stock d’eau terrestre négatif, après déduction de la tendance, de l’accélération et des signaux saisonniers, et il est désigné comme un événement de sécheresse lorsqu’il perdure pour trois continus ou plus. Le déficit hydrique non saisonnier est utilisé pour mesurer la sécheresse hydrologique dans le Sud-Ouest de la Chine. Il a été montré que cette méthode du déficit hydrique identifie clairement le début, la fin, et la durée de la sécheresse hydrologique, et elle quantifie la sévérité instantanée, la magnitude du pic de sécheresse, et le temps de rétablissement. De plus, il apparaît que les sécheresses sévères ont touché fréquemment le Sud-Ouest de la Chine au cours des dernières décennies, la sécheresse de 2011–2012 ayant été la plus sévère ; cette sécheresse a duré 10 mois, la sévérité a été de −208.92 km3/mois, et le temps de rétablissement a été de 17 mois. Ces résultats correspondent bien aux bases de données sur les sécheresses du Centre climatique national de la Chine, ce qui signifie que le déficit hydrique non saisonnier basé sur GRACE a un effet quantitatif sur la caractérisation de la sécheresse hydrologique et constitue un outil efficace pour la mise en évidence de sécheresses.

Resumen

Se evalúa una aproximación cuantitativa para la caracterización de una sequía hidrológica, basada en los datos del déficit de almacenamiento de agua no estacional proveniente de la misión satélital Gravity Recovery and Climate Experiment (GRACE) de la NASA. El déficit de almacenamiento no estacional es el almacenamiento de agua terrestre negativo después de deducir la tendencia, la aceleración y señales estacionales, y se designa como un evento de sequía cuando persiste durante tres o más meses em forma continua. El déficit de almacenamiento de agua no estacional se utiliza para medir la sequía hidrológica en el suroeste de China. Se encuentra que este método del déficit de almacenamiento identifica claramente el inicio, el final y la duración de la sequía hidrológica, y cuantifica instantáneamente la severidad, la magnitud del pico de la sequía, y el tiempo de recuperación. Por otra parte, se encuentra que sequías severas frecuentes han golpeado el suroeste de China en varias de las últimas décadas, entre las cuales la sequía de 2011–2012 fue la más severa; la duración fue de 10 meses, la gravedad era de −208.92 km3/mes, y el tiempo de recuperación fue de 17 meses. Estos resultados se comparan también con la base de datos de sequías del National Climate Center of China, lo que significa que el déficit de almacenamiento de agua no estacional basada en GRACE tiene un efecto cuantitativo sobre la caracterización de la sequía hidrológica y proporciona una herramienta efectiva para la investigación de las sequías.

摘要

基于美国航空航天局重力恢复与气候实验卫星任务获取的非季节性储水赤字资料,研究了水文干旱描述的定量方法。非季节性水储量不足是扣除趋势、加速和季节性信号后负的陆地储水量,当持续三个月或三个月以上时,就称为干旱事件。非季节水储量不足用来测量中国西南地区的水文干旱状况。研究表明,非季节性水储量不足清楚地确定了水文干旱的开始、结束和持续时间,量化了瞬时严重性、干旱峰值量级和恢复的时间。此外,还发现过去的几十年中国西南地区经常出现严重的干旱,其中2011–2012年的干旱最为严重;持续时间为10个月,严重程度达每个月负208.92平方千米,恢复时间为17个月。这些结果与中国国家气候中心干旱数据库对比良好,表明基于重力恢复与气候实验卫星任务的非季节性水储量不足可定量描述水文干旱事件,对研究干旱提供了有效的工具。

Resumo

Uma abordagem quantitativa para caracterização de seca hidrológica, baseada em dados de déficit `de armazenamento não sazonal de água da missão de satélite “Gravity Recovery and Climate Experiment” (GRACE), da NASA, é considerada. Déficit não sazonal de armazenamento é o armazenamento negativo de água terrestre depois de contabilizar os sinais de tendência, aceleração e sazonalidade, e é designado como um evento de seca quando persiste por três ou mais meses consecutivos. O déficit de armazenamento não sazonal é usado para medir seca hidrológica no sudoeste da China. Foi apurado que este método de déficit de armazenamento claramente identifica o início da seca hidrológica, fim e duração, e quantifica severidade instantânea, magnitude de pico da seca e tempo de recuperação. Ainda, foi verificado que secas severas tem atingido o sudoeste da China nas últimas décadas, entre as quais a seca de 2011–2012 foi a mais severa; a duração foi de 10 meses, a severidade foi de −208.92 km3/mês e o tempo de recuperação foi de 17 meses. Estes resultados apresentam boa comparação com os bancos de dados de seca do Centro Nacional do Clima da China, o que significa que o déficit de armazenamento não sazonal baseado no GRACE tem um efeito quantitativo na caracterização de seca hidrológica e fornece uma ferramenta efetiva para pesquisar secas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  • Chao BF (2005) On inversion for mass distribution from global (time-variable) gravity field. J Geodyn 39:223–230. doi:10.1016/j.jog.2004.11.001

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009a) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404. doi:10.1029/2008JB006056

  • Chen JL, Wilson CR, Seo K-W (2009b) S2 tide aliasing in GRACE time-variable gravity solutions. J Geod 83:679–687

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Longuevergne L, Yang ZL, Scanlon BR (2010) Recent La Plata basin drought conditions observed by satellite gravimetry. J Geophys Res 115:D22108. doi:10.1029/2010JD014689

    Article  Google Scholar 

  • Cheng MK, Ries JC, Tapley BD (2011) Variations of the earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. doi:10.1029/2010JB000850

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. doi:10.1002/wcc.81

  • Dai A, Trenberth KE, Qian TT (2004) A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5(6):1117–1130

    Article  Google Scholar 

  • Famiglietti JS, Rodell M (2013) Water in the balance, invited perspective. Science 340:1300. doi:10.1126/science.1236460

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797

    Article  Google Scholar 

  • Frappart F, Papa F, da Silva JS, Ramillien G, Prigent C, Seyler F, Calmant S (2012) Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ Res Lett 7(4):044010

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Houborg R, Rodell M, Li B, Reichle R, Zaitchik B (2012) Drought indicators based on model assimilated GRACE terrestrial water storage observations. Water Resour Res 48:W07525. doi:10.1029/2011WR011291

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu GJ (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the earth’s gravity field. Report 327, Dept. of Geodetic Science and Surveying, Ohio State University, Columbus, OH

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi:10.1002/2013WR014633

    Article  Google Scholar 

  • Koji M, Kosuke H (2010) Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE. Geophys J Int 190:1495–1506. doi:10.1111/j.1365-246X.2012.05588.x

    Google Scholar 

  • Kusche J, Schmidt R, Petrovic S et al (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83(10):903–913

    Article  Google Scholar 

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531. doi:10.1029/2011WR011453

    Article  Google Scholar 

  • Leblanc MJ, Tregoning P, Ramillien G, Tweed SO, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45:W04408. doi:10.1029/2008WR007333

    Article  Google Scholar 

  • Lenk O (2013) Satellite based estimates of terrestrial water storage variations in Turkey. J Geodyn 67:106–110. doi:10.1016/j.jog.2012.04.010

    Article  Google Scholar 

  • Long D, Scanlon BR, Longuevergne L, Sun AY, Fernando DN, Save H (2013) GRACE satellites monitor large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40:3395–3401. doi:10.1002/grl.50655

    Article  Google Scholar 

  • Morishita Y, Heki K (2008) Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE. Earth Planet Sci Lett 272:677–682. doi:10.1016/j.epsl.2008.06.003

  • National Bureau of Statistics (2015) The indicators of population and energy in China. http://data.stats.gov.cn//english/. Accessed December 2015

  • National Climate Centre of China (2015) The extreme weather and climate change of China. http://cmdp.ncc.cma.gov.cn/Monitoring/en_global_extreme_monitoring.php. Accessed December 2015

  • Ogawa R, Chao BF, Heki K (2011) Acceleration signal in GRACE time-variable gravity in relation to interannual hydrological changes. Geophys J Int 184:673–679. doi:10.1111/j:1365-246X.2010.04843.x

    Article  Google Scholar 

  • Oleson KW et al (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563

    Article  Google Scholar 

  • Reager JT, Famiglietti JS (2009) Global terrestrial water storage capacity and flood potential using GRACE. Geophys Res Lett 36:L23402. doi:10.1029/2009GL040826

    Article  Google Scholar 

  • Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from gravity recovery and climate experiment (GRACE). Water Resour Res 42:W05417. doi:10.1029/2005WR004255

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34:L19404. doi:10.1029/2007GL031254

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545. doi:10.1002/2014GL059323

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson SC (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, de Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49:904–914. doi:10.1002/wrcr.20078

    Article  Google Scholar 

  • Wagner C, McAdoo D, Klokoe’nı’k J, Kostelecky’ J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geod 80:94–103. doi:10.1007/s00190-006-0036-x

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229. doi:10.1029/98JB02844

  • Wang H, Jia L, Steffen H, Wu P, Jiang L, Hsu H, Xiang L, Wang Z, Hu B (2012) Increased water storage in North America and Scandinavia from GRACE gravity data. Nat Geosci 6:38–42. doi:10.1038/ngeo1652

    Article  Google Scholar 

  • Wu X, Ray J, Dam TV (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. doi:10.1016/j.jog.2012.01.007

    Article  Google Scholar 

  • Yirdaw SZ, Snelgrove KR, Agboma CO (2008) GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J Hydrol 365:84–92. doi:10.1016/j.jhydrol.2008.04.004

    Article  Google Scholar 

  • Zhang ZZ, Chao BF, Yang L et al (2009) An effective filtering for GRACE time-variable gravity: fan filter. J Geophys Res 36:L17311

    Google Scholar 

Download references

Acknowledgements

We are grateful to CSR (UT) and GRGS, GSFC (NASA), and JAXA for providing the GRACE, GLDAS and TRMM data respectively. This research was supported by the National Natural Science Foundation of China (NSFC; Grant Nos. 41274032, 41474018), National 973 Project China (Grant Nos. 2013CB733301, 2013CB733302), and Basic Research Foundation 14-02-04 of the Key Laboratory of Geospace Environment and Geodesy of Ministry of Education, Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengtao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, N., Wang, Z., Jiang, W. et al. A quantitative approach for hydrological drought characterization in southwestern China using GRACE. Hydrogeol J 24, 893–903 (2016). https://doi.org/10.1007/s10040-015-1362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1362-y

Keywords

Navigation