Skip to main content
Log in

Abstract:

The conventional Hartree and Hartree-Fock approaches for treating many-electron bound systems have been extended recently to positive energy scattering problems, in which both the bound and continuum orbitals are determined by the requirement of full self-consistency. Serious consequences of such a theory are that the target orbitals become energy dependent and the asymptotic boundary conditions are satisfied only approximately, in lowest order. It is important therefore to test the theory for its convergence under configuration mixing. This self-consistent field (SCF) theory for scattering has been tested here for scattering from hydrogenic target as a model where the target function is determined dynamically. Penetration of the projectile inside the bound target orbital is manifest through the SCF for the bound state. Our results show that the theory converges to the correct amplitudes and to the exact boundary conditions as more configurations are added. The use of the amputated functions and the weak asymptotic condition (WAC) upon which the SCF theory is based, is justified as the WAC converges to the correct limit. It is then applied to the positron-helium and electron-helium scattering systems where the helium function is calculated simultaneously together with the scattering function. The resulting phase shifts and the SCF target functions are compared with those obtained with the pre-determined target functions in the conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 22 September 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerrad, E., Hahn, Y. Self-consistent field theory of collisions I. Scattering channels. Eur. Phys. J. D 10, 81–97 (2000). https://doi.org/10.1007/s100530050528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530050528

Navigation