Skip to main content
Log in

Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice

  • Published:
Molecules and Cells

Abstract

Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, Y., Oh, H., Rhee, S., and Yoo, Y. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491–509.

    Article  PubMed  CAS  Google Scholar 

  • Bittigau, P., Sifringer, M., Genz, K., Reith, E., Pospischil, D., Govindarajalu, S., Dzietko, M., Pesditschek, S., Mai, I., Dikranian, K., et al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. USA 99, 15089–15094.

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge, D.G., and Xue, D. (2004). Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr. Opin. Cell Biol. 16, 647–652.

    Article  PubMed  CAS  Google Scholar 

  • Burdon, R.H. (1995). Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18, 775–794.

    Article  PubMed  CAS  Google Scholar 

  • Casellas, P., Galiegue, S., and Basile, A.S. (2002). Peripheral benzodiazepine receptors and mitochondrial function. Neurochem. Int. 40, 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Chanock, S.J., Faust, L.R., Barrett, D., Bizal, C., Maly, F.E., Newburger, P.E., Ruedi, J.M., Smith, R.M., and Babior, B.M. (1992). O2-production by B lymphocytes lacking the respiratory burst oxidase subunit p47phox after transfection with an expression vector containing a p47phox cDNA. Proc. Natl. Acad. Sci. USA 89, 10174–10177.

    Article  PubMed  CAS  Google Scholar 

  • Chong, W.S., Hyun, C.L., Park, M.K., Park, J.M., Song, H.O., Park, T., Lim, Y.S., Cho, C.K., Kang, P.S., and Kwon, H.U. (2012). Midazolam protects B35 neuroblastoma cells through Akt-phosphorylation in reactive oxygen species derived cellular injury. Korean J. Anesthesiol. 62, 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, D.M., Furlong, S.J., Doucette, C.D., West, K.A., and Hoskin, D.W. (2010). The Ca(2+) channel blocker flunarizine induces caspase-10-dependent apoptosis in Jurkat T-leukemia cells. Apoptosis 15, 597–607.

    Article  PubMed  CAS  Google Scholar 

  • Davalos, A., de la Pena, G., Sanchez-Martin, C.C., Teresa Guerra, M., Bartolome, B., and Lasuncion, M.A. (2009). Effects of red grape juice polyphenols in NADPH oxidase subunit expression in human neutrophils and mononuclear blood cells. Br. J. Nutr. 102, 1125–1135.

    Article  PubMed  CAS  Google Scholar 

  • Erdine, S., Yucel, A., Ozyalcin, S., Ozyuvaci, E., Talu, G.K., Ahiskali, B., Apak, H., and Savci, N. (1999). Neurotoxicity of midazolam in the rabbit. Pain 80, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Faust, L.R., el Benna, J., Babior, B.M., and Chanock, S.J. (1995). The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis. J. Clin. Invest. 96, 1499–1505.

    Article  PubMed  CAS  Google Scholar 

  • Fu, M., Wang, C., Li, Z., Sakamaki, T., and Pestell, R.G. (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145, 5439–5447.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature 407, 770–776.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Price, M.T., Stefovska, V., Horster, F., Tenkova, T., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, S.M., Lee, S.-J., Kwon, T.K., Kim, K.-J., and Bae, Y.-S. (2010). NADPH oxidase is involved in protein kinase CKII down-regulation-mediated senescence through elevation of the level of reactive oxygen species in human colon cancer cells. FEBS Lett. 584, 3137–3142.

    Article  PubMed  CAS  Google Scholar 

  • Jevtovic-Todorovic, V., Hartman, R.E., Izumi, Y., Benshoff, N.D., Dikranian, K., Zorumski, C.F., Olney, J.W., and Wozniak, D.F. (2003). Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 23, 876–882.

    PubMed  CAS  Google Scholar 

  • Johansen, M.J., Gradert, T.L., Satterfield, W.C., Baze, W.B., Hildebrand, K., Trissel, L., and Hassenbusch, S.J. (2004). Safety of continuous intrathecal midazolam infusion in the sheep model. Anesth. Analg. 98, 1528–1535.

    Article  PubMed  CAS  Google Scholar 

  • Kang, M.Y., Tsuchiya, M., Packer, L., and Manabe, M. (1998). In vitro study on antioxidant potential of various drugs used in the perioperative period. Acta Anaesthesiol. Scand. 42, 4–12.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.H., Song, K.H., Jeong, K.C., Kim, S., Choi, C., Lee, C.H., and Oh, S.H. (2011). Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells. BMC Cancer 11, 334.

    Article  PubMed  CAS  Google Scholar 

  • Leto, T.L., Morand, S., Hurt, D., and Ueyama, T. (2009). Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 11, 2607–2619.

    Article  PubMed  CAS  Google Scholar 

  • Loepke, A.W., Istaphanous, G.K., McAuliffe, J.J., 3rd, Miles, L., Hughes, E.A., McCann, J.C., Harlow, K.E., Kurth, C.D., Williams, M.T., Vorhees, C.V., et al. (2009). The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory. Anesth. Analg. 108, 90–104.

    Article  PubMed  CAS  Google Scholar 

  • Malinovsky, J.M., Cozian, A., Lepage, J.Y., Mussini, J.M., Pinaud, M., and Souron, R. (1991). Ketamine and midazolam neurotoxicity in the rabbit. Anesthesiology 75, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284.

    Article  PubMed  CAS  Google Scholar 

  • Meier, P., Finch, A., and Evan, G. (2000). Apoptosis in development. Nature 407, 796–801.

    Article  PubMed  CAS  Google Scholar 

  • Muller, A., Hacker, J., and Brand, B.C. (1996). Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection. Infect. Immun. 64, 4900–4906.

    PubMed  CAS  Google Scholar 

  • Nishina, K., Akamatsu, H., Mikawa, K., Shiga, M., Maekawa, N., Obara, H., and Niwa, Y. (1998). The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth. Analg. 86, 159–165.

    PubMed  CAS  Google Scholar 

  • Olkkola, K.T., and Ahonen, J. (2008). Midazolam and other benzodiazepines. Handb. Exp. Pharmacol. 182, 335–360.

    Article  PubMed  CAS  Google Scholar 

  • Raad, H., Paclet, M.H., Boussetta, T., Kroviarski, Y., Morel, F., Quinn, M.T., Gougerot-Pocidalo, M.A., Dang, P.M., and El-Benna, J. (2009). Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91phox/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67phox, and p47phox. FASEB J. 23, 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  • Rao Malla, R., Raghu, H., and Rao, J.S. (2010). Regulation of NADPH oxidase (Nox2) by lipid rafts in breast carcinoma cells. Int. J. Oncol. 37, 1483–1493.

    PubMed  Google Scholar 

  • Reves, J.G., Fragen, R.J., Vinik, H.R., and Greenblatt, D.J. (1985). Midazolam: pharmacology and uses. Anesthesiology 62, 310–324.

    Article  PubMed  CAS  Google Scholar 

  • Riss, J., Cloyd, J., Gates, J., and Collins, S. (2008). Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol. Scand. 118, 69–86.

    Article  PubMed  CAS  Google Scholar 

  • Schoeffler, P., Auroy, P., Bazin, J.E., Taxi, J., and Woda, A. (1991). Subarachnoid midazolam: histologic study in rats and report of its effect on chronic pain in humans. Reg. Anesth. 16, 329–332.

    PubMed  CAS  Google Scholar 

  • Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Sinner, B., Friedrich, O., Zausig, Y., Bein, T., and Graf, B.M. (2011). Toxic effects of midazolam on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+-oscillations. Toxicology 290, 96–101.

    Article  PubMed  CAS  Google Scholar 

  • So, E.C., Chang, Y.T., Hsing, C.H., Poon, P.W., Leu, S.F., and Huang, B.M. (2010). The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol. Lett. 192, 169–178.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, M.F., Werdehausen, R., Gaza, N., Hermanns, H., Kremer, D., Bauer, I., Kury, P., Hollmann, M.W., and Braun, S. (2011). Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Reg. Anesth. Pain Med. 36, 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, B.A., Welin, M., Gordh, T., Jr., and Westman, J. (1995). Chronic subarachnoid midazolam (Dormicum) in the rat. Morphologic evidence of spinal cord neurotoxicity. Reg. Anesth. 20, 426–434.

    PubMed  CAS  Google Scholar 

  • Teoh, M.L., Sun, W., Smith, B.J., Oberley, L.W., and Cullen, J.J. (2007). Modulation of reactive oxygen species in pancreatic cancer. Clin. Cancer Res. 13, 7441–7450.

    Article  PubMed  CAS  Google Scholar 

  • Toyokuni, S., Okamoto, K., Yodoi, J., and Hiai, H. (1995). Persistent oxidative stress in cancer. FEBS Lett. 358, 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Trachootham, D., Lu, W., Ogasawara, M.A., Nilsa, R.D., and Huang, P. (2008). Redox regulation of cell survival. Antioxid Redox Signal. 10, 1343–1374.

    Article  PubMed  CAS  Google Scholar 

  • Yon, J.H., Daniel-Johnson, J., Carter, L.B., and Jevtovic-Todorovic, V. (2005). Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135, 815–827.

    Article  PubMed  CAS  Google Scholar 

  • Young, C., Jevtovic-Todorovic, V., Qin, Y.Q., Tenkova, T., Wang, H., Labruyere, J., and Olney, J.W. (2005). Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br. J. Pharmacol. 146, 189–197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan Mook Kim.

About this article

Cite this article

Mishra, S.K., Kang, JH., Lee, C.W. et al. Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Mol Cells 36, 219–226 (2013). https://doi.org/10.1007/s10059-013-0050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0050-9

Keywords

Navigation