Skip to main content
Log in

Novel in vitro culture condition improves the stemness of human dermal stem/progenitor cells

  • Research Article
  • Published:
Molecules and Cells

Abstract

Cell therapy using adult stem cells has emerged as a potentially new approach for the treatment of various diseases. Therefore, it is an essential procedure to maintain the stemness of adult stem cells for clinical treatment. We previously reported that human dermal stem/progenitor cells (hDSPCs) can be enriched using collagen type IV. However, hDSPCs gradually lose their stem cell properties as in vitro passages continue. In the present study, we developed optimized in vitro culture condition to improve the stemness of these hDSPCs. To evaluate whether the stemness of hDSPCs is well sustained in various culture conditions, we measured the expression levels of SOX2, NANOG, and S100B, which are well-known representative dermal progenitor markers. We observed that hDSPCs grown in three-dimensional (3D) culture condition had higher expression levels of those markers compared with hDSPCs grown in two-dimensional (2D) culture condition. Under the 3D culture condition, we further demonstrated that a high glucose (4.5 g/L) concentration enhanced the expression levels of the dermal progenitor markers, whereas O2 concentration did not affect. We also found that skin-derived precursor (SKP) culture medium was the most effective, among various culture media, in increasing the dermal progenitor marker expression. We finally demonstrated that this optimized culture condition enhanced the expression level of human telomerase reverse transcriptase (hTERT), the proliferation, and the multipotency of hDSPCs, an important characteristic of stem cells. Taken together, these results suggested that this novel in vitro culture condition improves the stemness of hDSPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amoh, Y., Li, L., Campillo, R., Kawahara, K., Katsuoka, K., Penman, S., and Hoffman, R.M. (2005). Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc. Natl. Acad. Sci. USA 102, 17734–17738.

    Article  CAS  PubMed  Google Scholar 

  • Biernaskie, J., Paris, M., Morozova, O., Fagan, B.M., Marra, M., Pevny, L., and Miller, F.D. (2009). SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5, 610–623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanpain, C., and Fuchs, E. (2006). Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X.D., Dusevich, V., Feng, J.Q., Manolagas, S.C., and Jilka, R.L. (2007). Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J. Bone Miner. Res. 22, 1943–1956.

    Article  CAS  PubMed  Google Scholar 

  • Driskell, R.R., Giangreco, A., Jensen, K.B., Mulder, K.W., and Watt, F.M. (2009). Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 7136, 2815–2823.

    Article  Google Scholar 

  • Driskell, R.R., Juneja, V.R., Connelly, J.T., Kretzschmar, K., Tan, D. W., and Watt, F.M. (2012). Clonal growth of dermal papilla cells in hydrogels reveals intrinsic differences between Sox2-positive and -negative cells in vitro and in vivo. J. Invest. Dermatol. 132, 1084–1093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ezashi, T., Das, P., and Roberts, R.M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. USA 102, 4783–4788.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, K.J., McKenzie, I.A., Mill, P., Smith, K.M., Akhavan, M., Barnabé-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N.R., Toma, J.G., et al. (2004). A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 6, 1082–1093.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, E. (2009). Finding one’s niche in the skin. Cell Stem Cell 4, 499–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grayson, W.L., Zhao, F., Bunnell, B., and Ma, T. (2007). Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 358, 948–953.

    Article  CAS  PubMed  Google Scholar 

  • Hill, R.P., Gledhill, K., Gardner, A., Higgins, C.A., Crawford, H., Lawrence, C., Hutchison, C.J., Owens, W.A., Kara, B., James, S. E., et al. (2012). Generation and characterization of multipotent stem cells from established dermal cultures. PLoS One 7, e50742.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaskelioff, M., Muller, F.L., Paik, J.H., Thomas, E., Jiang, S., Adams, A.C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadiñanos, J., et al. (2011). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. (2002a). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C.M. (2002b). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Moon, S.H., Lee, Y., Kim, G.J., Chung, H.M., and Choi, Y.S. (2013). Alternative xeno-free biomaterials derived from human umbilical cord for the self-renewal ex-vivo expansion of mesenchymal stem cells. Stem Cells Dev. 22, 1–14.

    Google Scholar 

  • Kuroda, Y., Kitada, M., Wakao, S., Nishikawa, K., Tanimura, Y., Makinoshima, H., Goda, M., Akashi, H., Inutsuka, A., Niwa, A., et al. (2010). Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl. Acad. Sci. USA 107, 8639–8643.

    Article  CAS  PubMed  Google Scholar 

  • Minchenko, A., Bauer, T., Salceda, S., and Caro, J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest. 71, 374–379.

    CAS  PubMed  Google Scholar 

  • Ohyama, M., Terunuma, A., Tock, C.L., Radonovich, M.F., Pise-Masison, C.A., Hopping, S.B., Brady, J.N., Udey, M.C., and Vogel, J.C. (2006). Characterization and isolation of stem cell enriched human hair follicle bulge cells. J. Clin. Invest. 116, 249–260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira, R.F., Halford, K.W., O’Hara, M.D., Leeper, D.B., Sokolov, B.P., Pollard, M.D., Bagasra, O., and Prockop, D.J. (1995). Cultured adherent cells from marrow can serve as long lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92, 4857–4861.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of human mesenchymal stem cells. Science 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, M., Pfaffl, M.W., Schönfelder, M., and Meyer, H.H. (2008). Gene expression in hair follicle dermal papilla cells after treatment with stanozolol. Biomark Insights. 4, 1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren, H., Cao, Y., Zhao, Q., Li, J., Zhou, C., Liao, L., Jia, M., Zhao, Q., Cai, H., Han, Z.C., et al. (2006). Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem. Biophys. Res. Commun. 347, 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Rendl, M., Lewis, L., and Fuchs, E. (2005). Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331.

    Article  PubMed Central  PubMed  Google Scholar 

  • Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., Muceniece, R., and Ancans, J. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 5, 378–386.

    Article  CAS  PubMed  Google Scholar 

  • Shin, D.W., Kim, S.N., Lee, S.M., Lee, W., Song, M.J., Park, S.M., Lee, T.R., Baik, J.H., Kim, H.K., Hong, J.H., et al. (2009). (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Shim, J.H., Kang, H.H., Lee, T.R., and Shin, D.W. (2012). Enrichment and characterization of human dermal stem/progenitor cells using collagen type IV. J. Dermatol. Sci. 67, 202–205.

    Article  CAS  PubMed  Google Scholar 

  • Shim, J.H., Lee, T.R., and Shin, D.W. (2013). Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity. Stem Cells Dev. 22, 1264–1274.

    Article  CAS  PubMed  Google Scholar 

  • Szade, K., Zuba-Surma, E., Rutkowski, A.J., Jozkowicz, A., and Dulak, J. (2011). CD45-CD14 +CD34 + murine bone marrow low-adherent mesenchymal primitive cells preserve multilineage differentiation potential in long-term in vitro culture. Mol. Cells 31, 497–507.

    Article  CAS  PubMed  Google Scholar 

  • Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabé-Heider, F., Sadikot, A., Kaplan, D.R., and Miller, F.D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784.

    Article  CAS  PubMed  Google Scholar 

  • Toma, J.G., McKenzie, I.A., Bagli, D., and Miller, F.D. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23, 727–737.

    Article  CAS  PubMed  Google Scholar 

  • Wegner, M., and Stolt, C.C. (2005). From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci. 28, 583–588.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Zhao, R.C., and Tredget, E.E. (2010). Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 28, 905–915.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyllie, F.S., Jones, C.J., Skinner, J.W., Haughton, M.F., Wallis, C., Wynford-Thomas, D., Faragher, R.G., and Kipling, D. (2000). Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet. 24, 16–17.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J., Choi, S.C., Park, C.Y., Shim, W.J., and Lim, D.S. (2007). Cardiac side population cells exhibit endothelial differentiation potential. Exp. Mol. Med. 39, 653–662.

    Article  CAS  PubMed  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: implications for cellbased therapies. Tissue Eng. 7, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13, 4279–4295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Ryong Lee or Dong Wook Shin.

About this article

Cite this article

Shim, J.H., Lee, T.R. & Shin, D.W. Novel in vitro culture condition improves the stemness of human dermal stem/progenitor cells. Mol Cells 36, 556–563 (2013). https://doi.org/10.1007/s10059-013-0260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0260-1

Keywords

Navigation