Skip to main content
Log in

Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis

  • Research Article
  • Published:
Molecules and Cells

Abstract

Extracellular immune responses to ascomycete and oomycete pathogens in Arabidopsis are dependent on vesicle-associated secretion mediated by the SNARE proteins PEN1 syntaxin, SNAP33 and endomembrane-resident VAMP721/722. Continuous movement of functional GFP-VAMP722 to and from the plasma membrane in non-stimulated cells reflects the second proposed function of VAMP721/722 in constitutive secretion during plant growth and development. Application of the bacterium-derived elicitor flg22 stabilizes VAMP721/722 that are otherwise constitutively degraded via the 26S proteasome pathway. Depletion of VAMP721/722 levels by reducing VAMP721/722 gene dosage enhances flg22-induced seedling growth inhibition in spite of elevated VAMP721/722 abundance. We therefore propose that plants prioritize the deployment of the corresponding secretory pathway for defense over plant growth. Interstingly, VAMP721/722 specifically interact in vitro and in vivo with the plasma membrane syntaxin SYP132 that is required for plant growth and resistance to bacteria. This suggests that the plant growth/immunity-involved VAMP721/722 form SNARE complexes with multiple plasma membrane syntaxins to discharge cue-dependent cargo molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assaad, F.F., Qiu, J.L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S.C., Edwards, H., Ramonell, K., et al. (2004). The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15, 5118–5129.

    Article  PubMed  CAS  Google Scholar 

  • Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Benschop, J.J., Mohammed, S., O’Flaherty, M., Heck, A.J., Slijper, M., and Menke, F.L. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214.

    Article  PubMed  CAS  Google Scholar 

  • Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D.G., Hasek, J., Paciorek, T., Petrasek, J., Seifertova, D., Tejos, R., et al. (2008). Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 105, 4489–4494.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A. (2001). Natural products and plant disease resistance. Nature 411, 843–847.

    Article  PubMed  CAS  Google Scholar 

  • Ebine, K., Fujimoto, M., Okatani, Y., Nishiyama, T., Goh, T., Ito, E., Dainobu, T., Nishitani, A., Uemura, T., Sato, M.H., et al. (2011). A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13, 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Enami, K., Ichikawa, M., Uemura, T., Kutsuna, N., Hasezawa, S., Nakagawa, T., Nakano, A., and Sato, M.H. (2009). Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol. 50, 280–289.

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa, Y., and Kato, N. (2007). Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. Plant J. 52, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F., and Jurgens, G. (2001). Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol. 155, 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S., and Davis, M.M. (2006). T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Jahn, R., and Scheller, R.H. (2006). SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, J.K., Rivera, V.M., and Simon, S.M. (2009). Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137, 1308–1319.

    Article  PubMed  Google Scholar 

  • Kalde, M., Nuhse, T.S., Findlay, K., and Peck, S.C. (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. USA 104, 11850–11855.

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., Fujikawa, Y., Fuselier, T., Adamou-Dodo, R., Nishitani, A., and Sato, M.H. (2010). Luminescence detection of SNARESNARE interaction in Arabidopsis protoplasts. Plant Mol. Biol. 72, 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Kombrink, E., and Hahlbrock, K. (1986). Responses of cultured parsley cells to elicitors from phytopathogenic fungi: timing and dose dependency of elicitor-induced reactions. Plant Physiol. 81, 216–221.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Bednarek, P., and Schulze-Lefert, P. (2008a). Secretory pathways in plant immune responses. Plant Physiol. 147, 1575–1583.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Panstruga, R., and Schulze-Lefert, P. (2008b). Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol. 29, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., et al. (2008c). Co-option of a default secretory pathway for plant immune responses. Nature 451, 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., et al. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180–1183.

    Article  PubMed  CAS  Google Scholar 

  • Lipka, V., Kwon, C., and Panstruga, R. (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147–174.

    Article  PubMed  CAS  Google Scholar 

  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D., Pajonk, S., Micali, C., O’Connell, R., and Schulze-Lefert, P. (2009). Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J. 57, 986–999.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K., Debroy, S., Lee, Y.H., Pumplin, N., Jones, J., and He, S.Y. (2006). A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313, 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Nuhse, T.S., Boller, T., and Peck, S.C. (2003). A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J. Biol. Chem. 278, 45248–45254.

    Article  PubMed  Google Scholar 

  • Otegui, M.S., and Spitzer, C. (2008). Endosomal functions in plants. Traffic 9, 1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-Lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974–26984.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J.A., and Edwardson, J.M. (2006). Compound exocytosis: mechanisms and functional significance. Traffic 7, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Richter, C., West, M., and Odorizzi, G. (2007). Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies. EMBO J. 26, 2454–2464.

    Article  PubMed  CAS  Google Scholar 

  • Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S., and Schulze-Lefert, P. (2009). Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J. 28, 3439–3449.

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot, A. (2007). Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 6–17.

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot, A.A., Kovaleva, V., Bassham, D.C., and Raikhel, N.V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12, 3733–3743.

    PubMed  CAS  Google Scholar 

  • Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V., and Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18, 731–746.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, T., Ueda, T., Ohniwa, R.L., Nakano, A., Takeyasu, K., and Sato, M.H. (2004). Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • Ungar, D., and Hughson, F.M. (2003). SNARE protein structure and function. Annu. Rev. Cell Dev. Biol. 19, 493–517.

    Article  PubMed  CAS  Google Scholar 

  • van Loon, L.C., Rep, M., and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162.

    Article  PubMed  Google Scholar 

  • Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308, 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  • Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T.H., and Rothman, J.E. (1998). SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, H.H., Kwon, C., and Chung, I.K. (2010). An Arabidopsis splicing RNP variant STEP1 regulates telomere length homeostasis by restricting access of nuclease and telomerase. Mol. Cells 30, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Feechan, A., Pedersen, C., Newman, M.A., Qiu, J.L., Olesen, K.L., and Thordal-Christensen, H. (2007). A SNAREprotein has opposing functions in penetration resistance and defence signalling pathways. Plant J. 49, 302–312.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhang, H., Liu, P., Hao, H., Jin, J.B., and Lin, J. (2011). Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6, e26129.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Xu, J., and Heinemann, S.F. (2009). Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61, 397–411.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EFTu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul Schulze-Lefert or Chian Kwon.

About this article

Cite this article

Yun, H.S., Kwaaitaal, M., Kato, N. et al. Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Mol Cells 35, 481–488 (2013). https://doi.org/10.1007/s10059-013-2130-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2130-2

Keywords

Navigation