Skip to main content
Log in

Bitter melon (Momordica charantia) extract suppresses cytokineinduced activation of MAPK and NF-κB in pancreatic β-Cells

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Previously, the aqueous ethanolic extract (AEE) of unripe fruit of bitter melon (BM; Momordica charantia) was demonstrated to inhibit cytokine-induced apoptosis via modulating Bcl-2 family and caspase cascades in MIN6N8 pancreatic β-cells. Here, it was sought to determine whether the anti-apoptotic effect of AEE-BM is mediated by suppressing the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB), major upstream effectors of Bcl-2 family and caspase cascades, in cytokine-treated MIN6N8 cells. The results exhibited that the AEE-BM suppressed the activation of MAPKs including stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and p44/42, and the activity of NF-κB. The findings suggest that BM protects pancreatic β-cells through down-regulation of MAPKs and NF-κB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarkar S, Pravana M, Maritaa R. Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol. Res. 33: 1–4 (1996)

    Article  CAS  Google Scholar 

  2. Krawinkel MB, Keding GB. Bitter gourd (Momordica charantia): A dietary approach to hyperglycemia. Nutr. Rev. 64: 331–337 (2006)

    Google Scholar 

  3. Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 93: 123–123 (2004)

    Article  CAS  Google Scholar 

  4. Basch E, Garbadi S, Ulbright C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am. J. Health-Syst. Ph. 60: 356–359 (2003)

    Google Scholar 

  5. Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 2: 349–362 (1996)

    CAS  Google Scholar 

  6. Riboulet CA, Diraison F, Siew LK, Wong FS, Rutter GA. Inhibition of AMP-activated protein kinase protects pancreatic β-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity. Diabetes 57: 415–423 (2008)

    Article  Google Scholar 

  7. Kim K, Kim HY. Momordica charantia protects against cytokineinduced apoptosis in pancreatic β-cells. Food Sci. Biotechnol. 17: 947–952 (2008)

    Google Scholar 

  8. Larsen L, Storling J, Darville M, Eizirik DL, Bonny C, Billestrup N, Mandrup PT. Extracellular signal-regulated kinase is essential for interleulin-1-induced and nuclear factor κB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 48: 2582–2590 (2005)

    Article  CAS  Google Scholar 

  9. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874 (2000)

    Article  CAS  Google Scholar 

  10. Mandrup PT. β-Cell apoptosis: Stimuli and signaling. Diabetes 50: S58–S63 (2001)

    Article  Google Scholar 

  11. Kim WH, Lee JW, Gao B, Jung MH. Synergistic activation of JNK/SAPK induced by TNF-α and IFN-γ: Apoptosis of pancreatic β-cells via the p53 and ROS pathway. Cell. Signal. 17: 1516–1532 (2005)

    Article  CAS  Google Scholar 

  12. Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D. Conditional and specific NF-κB blockade protects pancreatic β cells from diabetogenic agents. P. Nat. Acad. Sci. USA 103: 5072–5077 (2006)

    Article  CAS  Google Scholar 

  13. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes. Diabetes 54: S97–S107 (2005)

    Article  CAS  Google Scholar 

  14. Saldeen J, Welsh N. Interleukin-1 β induced activation of NF-κB in insulin producing RINm5F cells is prevented by the protease inhibitor N α-p-tosyl-L-lysine chloromethylketone. Biochem. Bioph. Res. Co. 203: 149–155 (1994)

    Article  CAS  Google Scholar 

  15. Flodstrom M, Welsh N, Eizirik DL. Cytokines activate the nuclear factor κB (NF-κB) and induce nitric oxide production in human pancreatic islets. FEBS Lett. 385: 4–6 (1996)

    Article  CAS  Google Scholar 

  16. Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-1β by adenoviral gene transfer of an Ikappa B repressor. J. Biol. Chem. 275: 36509–36513 (2000)

    Article  CAS  Google Scholar 

  17. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15: 535–548 (2004)

    Article  CAS  Google Scholar 

  18. Yagi N, Yokono K, Amano K, Nagata M, Tsukamoto K, Hasegawa Y, Yoneda R, Okamoto N, Moriyama H, Miki M, Tominaga Y, Miyazaki JI, Yagita H, Okumura K, Mizoguchi A, Miki A, Ide C, Maeda S, Kasuga M. Expression of intercellular adhesion molecule 1 on pancreatic β-cell destruction by cytotoxic T-cells in murine autoimmune diabetes. Diabetes 44: 744–752 (1995)

    Article  CAS  Google Scholar 

  19. Di Matteo MA, Loweth AC, Thomas S, Mabley JG, Morgan NG, Thorpe JR, Green IC. Superoxide, nitric oxide, peroxynitrite, and cytokine combinations all cause functional impairment and morphological changes in rat islets of Langerhans and insulinsecreting cell lines but dictate cell death by different mechanism. Apoptosis 2: 164–177 (1997)

    Article  Google Scholar 

  20. Briaud I, Lingohr MK, Dickson LM, Wrede CE, Rhodes CJ. Differential activation mechanisms of Erk-1/2 and p70 (S6K) by glucose in pancreatic β-cells. Diabetes 52: 974–983 (2003)

    Article  CAS  Google Scholar 

  21. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 12: 397–408 (2001)

    CAS  Google Scholar 

  22. Kim EK, Kwon KB, Song MY, Seo SW, Park SJ, Ka SO. Genistein protects pancreatic beta cells against cytokine-mediated toxicity. Mol. Cell. Endocrinol. 278: 18–28 (2007)

    Article  CAS  Google Scholar 

  23. Raman M, Chen W, Crobb MH. Differential regulation and properties of MAPKs. Oncogene 26: 3100–3112 (2007)

    Article  CAS  Google Scholar 

  24. Nakano H, Nakajama A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ. 13: 730–737 (2006)

    Article  CAS  Google Scholar 

  25. Roux PP, Blenis J. ERK and p38 MAPK-Activated protein kinases: A family of protein kinases with divers biological functions. Microbiol. Mol. Biol. R. 68: 320–344 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Kim, H.Y. Bitter melon (Momordica charantia) extract suppresses cytokineinduced activation of MAPK and NF-κB in pancreatic β-Cells. Food Sci Biotechnol 20, 531–535 (2011). https://doi.org/10.1007/s10068-011-0074-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0074-x

Keywords

Navigation