Skip to main content
Log in

Cold plasma treatment for microbial safety and preservation of fresh lettuce

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cold plasma treatment (CPT) was investigated for inhibition of foodborne pathogens and extension of fresh lettuce storage life. Lettuce samples were treated with CP at 400 W and 900 W for 10 min for assessment of the effects of CPT on inhibition of Escherichia coli O157:H7 and Salmonella Typhimurium, and on physicochemical and sensory properties of lettuce. N2, an N2-O2 mixture, and He effectively formed CP against both pathogens. CPT inhibited both pathogens on lettuce by up to 2.8 log CFU/g. The Weibull model adequately described the degree of microbial inhibition using CPT. N2-CPT did not affect the sensory properties of lettuce. N2-CPT resulted in a bacteriostatic effect against growth of E. coli O157:H7 but did not affect physicochemical properties of lettuce during storage. CPT demonstrated potential for improving the microbial safety of vegetables without loss of physicochemical or sensory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huyskens-Keil S, Hassenberg K, Herppich WB. Impact of postharvest UV-C and ozone treatment on textural properties of white asparagus (Asparagus officinalis L.). J. Appl. Bot. Food Qual. 84: 229–234 (2011)

    CAS  Google Scholar 

  2. Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 108: 1028–1038 (2008)

    Article  CAS  Google Scholar 

  3. Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Protect. 67: 2342–2353 (2004)

    Google Scholar 

  4. Centers for Disease Control and Prevention (CDC). Multistate outbreak of shiga toxin-producing Escherichia coli O157:H7 infections linked to ready-toeat salads, Atlanta, GA, USA. Available from: http://www.cdc.gov/ecoli/2013/ O157H7-11-13/index.html?s_cid=cs_002. Accessed Apr. 6, 2015.

  5. Food and Drug Administration. Lettuce: FDA investigation summary - Multistate outbreak of E. coli O157:H7 illnesses linked to ready-to-eat salads. Available from: http://www.fda.gov/food/recallsoutbreaksemergencies/outbreaks/ucm374327.htm. Accessed Apr. 1, 2015.

  6. Food and Drug Administration. Commodity specific food safety guidelines for the lettuce and leafy greens supply chain - 1st Edition. Available from: http://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformation/produceplantproducts/ucm168630.htm. Accessed Apr. 1, 2015.

  7. Bell KY, Cutter CN, Sumner SS. Reduction of foodborne micro-organisms on beef carcass tissue using acetic acid, sodium bicarbonate, and hydrogen peroxide spray washes. Food Microbiol. 14: 439–448 (1997)

    Article  CAS  Google Scholar 

  8. Uyttendaele M, Neyts K, Vanderswalmen H, Notebaert E, Debevere J. Control of Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated water, or thyme essential oil solution. Int. J. Food Microbiol. 90: 263–271 (2004)

    Article  CAS  Google Scholar 

  9. Hao J, Qiu S, Li H, Chen T, Liu H, Li L. Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli. Int. J. Food Microbiol. 155: 99–104 (2012)

    Article  CAS  Google Scholar 

  10. Lim S, Park H, Lee S, Sung D, Oh S. Bactericidal effects of lettuce after subsequent washing with hypobromous acid and sodium hypochlorite. Food Sci. Biotechnol. 21: 1565–1570 (2012)

    Article  CAS  Google Scholar 

  11. Joshi K, Mahendran R, Alagusundaram K, Norton T, Tiwari B. Novel disinfectants for fresh produce. Trends Food Sci. Tech. 34: 54–61 (2013)

    Article  CAS  Google Scholar 

  12. Guzel-Seydim ZB, Greene AK, Seydim A. Use of ozone in the food industry. LWT-Food Sci. Technol. 37: 453–460 (2004)

    Article  CAS  Google Scholar 

  13. Kim JG, Youse AE, Chism GW. Use of ozone to inactivate microorganisms on lettuce. J. Food Safety 19: 17–34 (1999)

    Article  CAS  Google Scholar 

  14. Parish M, Beuchat L, Suslow T, Harris L, Garrett E, Farber J, Busta F. Methods to reduce/eliminate pathogens from fresh and fresh cut produce. Compr. Rev. Food Sci. F. 2: 161–173 (2003)

    Article  Google Scholar 

  15. Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233: 81–86 (2004)

    Article  CAS  Google Scholar 

  16. Fernández A, Thompson A. The inactivation of Salmonella by cold atmospheric plasma treatment. Food Res. Int. 45: 678–684 (2012)

    Article  Google Scholar 

  17. Fernandez A, Noriega E, Thompson A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 33: 24–29 (2013)

    Article  CAS  Google Scholar 

  18. Wang R, Nian W, Wu H, Feng H, Zhang K, Zhang J, Zhu W, Becker K, Fang J. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation. Eur. Phys. J. D 66: 1–7 (2012)

    Article  Google Scholar 

  19. Bermúdez-Aguirre D, Wemlinger E, Pedrow P, Barbosa-Cánovas G, Garcia-Perez M. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34: 149–157 (2013)

    Article  Google Scholar 

  20. Kim JE, Lee D, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128–136 (2014)

    Article  CAS  Google Scholar 

  21. Nath A, Chattopadhyay P, Majumdar G. High temperature short time air puffed ready-to-eat (RTE) potato snacks: Process parameter optimization. J. Food Eng. 80: 770–780 (2007)

    Article  CAS  Google Scholar 

  22. Hülsheger H, Potel J, Niemann E. Killing of bacteria with electric pulses of high field strength. Radiat. Environ. Biophy. 20: 53–65 (1981)

    Article  Google Scholar 

  23. Peleg M. A model of microbial survival after exposure to pulsed electric fields. J. Sci. Food Agr. 67: 93–99 (1995)

    Article  CAS  Google Scholar 

  24. Geeraerd A, Valdramidis V, Van Impe J. GInaFiT, a freeware tool to assess nonlog- linear microbial survivor curves. Int. J. Food Microbiol. 102: 95–105 (2005)

    Article  CAS  Google Scholar 

  25. Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of lowpressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann. Microbiol. doi: 10.1007/s13213-014-0992-y (2014)

    Google Scholar 

  26. Kim SL, Kim SK, Park CH. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 37: 319–327 (2004)

    Article  CAS  Google Scholar 

  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  28. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199–1203 (1958)

    Article  Google Scholar 

  29. Lee K, Paek KH, Ju WT, Lee Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J. Microbiol. 44: 269–275 (2006)

    Google Scholar 

  30. Lee H, Noh Y, Yang H, Min S. Inhibition of foodborne pathogens on polystyrene, sausage casings, and smoked salmon using nonthermal plasma treatments. Korean J. Food Sci. Technol. 43: 513–517 (2011)

    Article  Google Scholar 

  31. Du CM, Wang J, Zhang L, Li HX, Liu H, Xiong Y. The application of a nonthermal plasma generated by gas–liquid gliding arc discharge in sterilization. New J. Phys. 14: 5–17 (2012)

    Google Scholar 

  32. Lu X, Ye T, Cao Y, Sun Z, Xiong Q, Tang Z, Xiong Z, Hu J, Jiang Z, Pan Y. The roles of the various plasma agents in the inactivation of bacteria. J. Appl. Phys. 104: 053309 (2008)

  33. Sim C. Application of response surface methodology for the optimization of process in food technology. Food Eng. Prog. 15: 97–115 (2011)

    Google Scholar 

  34. Pace B, Cardinali A, D’Antuono I, Serio F, Cefola M. Relationship between quality parameters and the overall appearance in lettuce during storage. Int. J. Food Processing Techno. 1: 19–26 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea C. Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, A.Y., Oh, Y.J., Kim, J.E. et al. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci Biotechnol 24, 1717–1724 (2015). https://doi.org/10.1007/s10068-015-0223-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0223-8

Keywords

Navigation