Skip to main content

Advertisement

Log in

Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2021

This article has been updated

Abstract

Background

Syringomyelia and Chiari malformation are classified as rare diseases on Orphanet, but international guidelines on diagnostic criteria and case definition are missing. Aim of the study: to reach a consensus among international experts on controversial issues in diagnosis and treatment of Chiari 1 malformation and syringomyelia in adults.

Methods

A multidisciplinary panel of the Chiari and Syringomyelia Consortium (4 neurosurgeons, 2 neurologists, 1 neuroradiologist, 1 pediatric neurologist) appointed an international Jury of experts to elaborate a consensus document. After an evidence-based review and further discussions, 63 draft statements grouped in 4 domains (definition and classification/planning/surgery/isolated syringomyelia) were formulated. A Jury of 32 experts in the field of diagnosis and treatment of Chiari and syringomyelia and patient representatives were invited to take part in a three-round Delphi process. The Jury received a structured questionnaire containing the 63 statements, each to be voted on a 4-point Likert-type scale and commented. Statements with agreement <75% were revised and entered round 2. Round 3 was face-to-face, during the Chiari Consensus Conference (Milan, November 2019).

Results

Thirty-one out of 32 Jury members (6 neurologists, 4 neuroradiologists, 19 neurosurgeons, and 2 patient association representatives) participated in the consensus. After round 2, a consensus was reached on 57/63 statements (90.5%). The six difficult statements were revised and voted in round 3, and the whole set of statements was further discussed and approved.

Conclusions

The consensus document consists of 63 statements which benefited from expert discussion and fine-tuning, serving clinicians and researchers following adults with Chiari and syringomyelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, Speer MC (1999) Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 44(5):1005–1017

    Article  PubMed  CAS  Google Scholar 

  2. Ciaramitaro P, Garbossa D, Peretta P, Piatelli G, Massimi L, Valentini L, Migliaretti G, Baldovino S, Roccatello D, Kodra Y, Taruscio D, Interregional Chiari and Syringomyelia Consortium on behalf of the Interregional Chiari and Syringomyelia Consortium (2020) Syringomyelia and Chiari Syndrome Registry: advances in epidemiology, clinical phenotypes and natural history based on a North Western Italy cohort. Ann Ist Super Sanita 56(1):48–58

    PubMed  Google Scholar 

  3. Kurland LT (1958) Descriptive epidemiology of selected neurologic and myopathic disorders with a particular refrence to a survey in Rochester, Minnesota. J Chronic Dis 8:378–415

    Article  PubMed  CAS  Google Scholar 

  4. Brewis M, Poskanzer DC, Rolland C et al (1966) Neurological diseases in an English city. Acta Neurol 42(S24):1–89

    Google Scholar 

  5. Gudmundsson KR (1968) The prevalence of some neurological diseases in Iceland. Acta Neurol Scand 44:57–69

    Article  PubMed  CAS  Google Scholar 

  6. Brickell KL, Anderson NE, Charleston AJ, Hope JK, Bok AP, Barber PA (2006) Ethnic differences in syringomyelia in New Zealand. J Neurol Neurosurg Psychiatry 77:989–991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sakushima K, Tsuboi S, Yabe I, Hida K, Terae S, Uehara R, Nakano I, Sasaki H (2012) Nationwide survey on the epidemiology of syringomyelia in Japan. J Neurol Sci 313:147–152

    Article  PubMed  Google Scholar 

  8. Klimov VS, Gulay YU, Evsyukov AV, Moysak GI (2017) Syringosubarachnoid shunting in treatment of syringomyelia: a literature review and a clinical case report. Burdenko’s Journal of Neurosurgery 3:22–29

    Google Scholar 

  9. Ciaramitaro P, Baldovino S, Roccatello D et al (2011) Chiari and Syringomyelia Consortium: a model of multidisciplinary and sharing path for rare diseases. Neurol Sci 32(Suppl 3):S271–S272

    Article  PubMed  Google Scholar 

  10. Consensus Conference on Chiari Malformation (2009) Neurol Sci 2011; 32 (S3)

  11. Michael A, Erio Z (1996) Gazing into the oracle: the Delphi method and its application to social policy and public health. Kingsley Publishers, London

    Google Scholar 

  12. Chiari H (1987) Concerning alterations in the cerebellum resulting from cerebral hydrocephalus (1891). Pediatr Neurosci 13:3–8

    Article  PubMed  CAS  Google Scholar 

  13. Chiari H (1896) Über veränderungen des Kleinhirns, des Pons un der Medulla Oblongata in folge von congenitaler Hydrocephalie des Grosshirns. Denkschr Akad Wiss Wien 63:71–116

    Google Scholar 

  14. Chiari H (1891) Über Veränderungen des Kleinhirns Infolge von Hydrocephalie des Grosshirns. Dtsch Med Wochenschr 17:1172–1175

    Article  Google Scholar 

  15. Tubbs RS, Elton S, Grabb P, Dockery SE, Bartolucci AA, Oakes WJ (2001) Analysis of the posterior fossa in children with the Chiari 0 malformation. Neurosurgery 48:1050–1055

    PubMed  CAS  Google Scholar 

  16. Tubbs RS, Iskandar BJ, Bartolucci AA, Oakes WJ (2004) A critical analysis of the Chiari 1.5 malformation. J Neurosurg 101:179–183

    PubMed  Google Scholar 

  17. Iskandar BJ, Hedlund GL, Grabb PA, Oakes WJ (1998) The resolution of syringohydromyelia without hindbrain herniation after posterior fossa decompression. J Neurosurg 89:212–216

    Article  PubMed  CAS  Google Scholar 

  18. Kyoshima K, Kuroyanagi T, Oya F, Kamijo Y, El-Noamany H, Kobayashi S (2002) Syringomyelia without hindbrain herniation: tight cisterna magna. Report of four cases and a review of the literature. J Neurosurg 96:239–249

    PubMed  Google Scholar 

  19. Isik N, Elmaci I, Kaksi M, Gokben B, Isik N, Celik M (2011) A new entity: Chiari zero malformation and its surgical method. Turk Neurosurg 21:264–268

    PubMed  Google Scholar 

  20. Wang J, Alotaibi NM, Samuel N, Ibrahim GM, Fallah A, Cusimano MD (2017) Acquired Chiari malformation and syringomyelia secondary to space-occupying lesions: A Systematic Review. World Neurosurg 98:800–808

    Article  PubMed  Google Scholar 

  21. International Headache Society (2018) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38(1):1–211

    Article  Google Scholar 

  22. Urbizu A, Poca M-A, Vidal X, Rovira A, Sahuquillo J, Macaya A (2014) MRI-based morphometric analysis of posterior cranial fossa in the diagnosis of Chiari malformation type I. J Neuroimaging 24(3):250–256

    Article  PubMed  Google Scholar 

  23. Taylor RF, Larkins MV (2002) Headache and Chiari I malformation: clinical presentation, diagnosis and controversies in management. Curr Pain Headache Rep 6:331–337

    Article  PubMed  Google Scholar 

  24. Ciaramitaro P, Garbossa D, Ferraris M (2019) Massaro F (2019) Clinical diagnosis-Part I: what is really caused by Chiari I? Childs Nervous System. Published online 35:1673–1679. https://doi.org/10.1007/s00381-019-04206-z

    Article  Google Scholar 

  25. Faloon M, Sahai N, Pierce TP, Dunn CJ, Sinha K, Hwang KS, Emami A (2018) Incidence of neuraxial abnormalities is approximately 8% among patients with adolescent idiopathic scoliosis: a meta-analysis. Clin Orthop Relat Res 476(7):1506–1513

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shen J, Shen J, Huang K, Wu Y, Pan J, Zhan R (2019) Syringobulbia in patients with Chiari malformation type i: a systematic review. Biomed Res Int: 4829102. Published online 2019 Mar 19. 2019:1–8. https://doi.org/10.1155/2019/4829102

  27. Victor M, Ropper HA (2002) Adams &Victor’s: principles of neurology. McGraw Hill

  28. Roser F, Ebner FH, Sixt C, Hagen JM, Tatagiba MS (2010) Defining the line between hydromyelia and syringomyelia. A differentiation is possible based on electrophysiological and magnetic resonance imaging studies. Acta Neurochir 152:213–219

    Article  PubMed  Google Scholar 

  29. Vaquero J, Martinez R, Arias A (1990) Syringomyela-Chiari complex: magnetic resonance imaging and clinical evaluation of surgical treatment. J Neurosurg 73(1):64–68

    Article  PubMed  CAS  Google Scholar 

  30. Moncho D, Poca MA, Minoves T, Ferrè A, CanasV SJ (2016) Are evoked potentials clinically useful in the study of patients with Chiari malformation type 1? J Neurosurg 15:95–108

    Google Scholar 

  31. Ferrèa PM, de la Calzada MD, Moncho D, Romero O, Sampol G, Sahuquillo J (2017) Sleep-related breathing disorders in Chiari malformation type 1: a prospective study of 90 patients. Sleep Jun 1:40(6). https://doi.org/10.1093/sleep/zsx069

    Article  Google Scholar 

  32. Tubbs RS, Beckman J, Naftel RP, Chern JJ, Wellons JC, Rozzelle CJ, Blount JP, Oakes WJ (2011) Institutional experience with 500 cases of surgically treated pediatric Chiari malformation type I. J Neurosurg Pediatr 7(3):248–256

    Article  PubMed  Google Scholar 

  33. Siasios J, Kapsalaki E, Fountas K (2012) Surgical management of patients with Chiari I malfomation. Int J Pediatr:640127 Published online 2012 Jun 28. https://doi.org/10.1155/2012/640127

  34. Förander P, Sjåvik K, Solheim O, Riphagen I, Gulati S, Salvesen Ø, Jakolac AS (2014) The case for duraplasty in adults undergoing posterior fossa decompression for Chiari I malformation: a systematic review and meta-analysis of observational studies. Clin Neurol Neurosurg 125:58–64

    Article  PubMed  Google Scholar 

  35. Zhao JL, Li MH, Wang CL, Meng W (2016) A systematic review of Chiari I malformation: techniques and outcomes. World Neurosurg 88:7–14. https://doi.org/10.1016/j.wneu.2015.11.087

    Article  PubMed  Google Scholar 

  36. Hao X, LinYang C, Rui H, Chang G, Ting L (2017) Posterior fossa decompression with and without duraplasty for the treatment of Chiari malformation type I: a systematic review and meta-analysis. Neurosurg Rev 40:213–221

    Article  Google Scholar 

  37. Langbridge B, Phillips E, Choi D (2017) Chiari malformation type 1: a systematic review of natural history and conservative management. World Neurosurgery 104:213–219

    Article  Google Scholar 

  38. Milano JB, Barcelos ACES, Onishi FJ, Daniel JW, Botelho RV, Dantas FR, Neto ER, de Freitas Bertolini E, Mudo ML, Brock RS, de Oliveira RS, Joaquim AF (2020) The effect of filum terminale sectioning for Chiari 1 malformation treatment: systematic review. Neurol Sci 41(2):249–256

    Article  PubMed  Google Scholar 

  39. Massimi L, Novegno F, Rocco D (2011) C. Chiari type I malformation in children. Adv Tech Stand Neurosurg 37:143–211

    Article  Google Scholar 

  40. Xu H, Chu L, He R, Ge C, Lei T (2017) Posterior fossa decompression with and without duraplasty for the treatment of Chiari malformation type I-a systematic review and meta-analysis. Neurosurg Rev 40:213–221

    Article  PubMed  Google Scholar 

  41. Lin W, Duan G, Xie J, Shao J, Wang Z, Jiao B (2018) Comparison of results between posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I: a systematic review and meta-analysis. World Neurosurg 110:460–474

    Article  PubMed  Google Scholar 

  42. Jia C, Li H, Wu J et al (2019) Comparison decompression by duraplasty or cerebellar tonsillectomy for Chiari malformation-I complicated with syringomyelia. Clin Neurol Neurosurg 176:1–7. https://doi.org/10.1016/j.clineuro.2018.11.008

    Article  PubMed  Google Scholar 

  43. Zhang Y, Zhang N, Qiu H, Zhou J, Li P, Ren M, Shen G, Chen L, Zhou C, Yang D, Liu Y, Mao Y, Gu X, Zhao Y (2011) An efficacy analysis of posterior fossa decompression techniques in the treatment of Chiari malformation with associated syringomyelia. J Clin Neurosci 18:1346–1349

    Article  PubMed  CAS  Google Scholar 

  44. Williams LE, Vannemreddy PS, Watson KS et al (2013) The need in dural graft suturing in Chiari I malformation decompression: a prospective, single-bind, randomized trial comparing sutured and sutureless duraplasty materials. Surg Neurol Int 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bhimani AD, Esfahani DR, Denyer S, Chiu RG, Rosenberg D, Barks AL, Arnone GD, Mehta AI (2018) Adult Chiari I malformations: an analysis on surgical risk factors and complications using an International Database. World Neurosurg 115:e490–e500

    Article  PubMed  Google Scholar 

  46. Aliaga L, Hekman KE, Yassari R, Straus D, Luther G, Chen J, Sampat A, Frim D (2012) A novel scoring system for assessing Chiari malformation type I treatment outcomes. Neurosurgery 70:656–665

    Article  PubMed  Google Scholar 

  47. Klekamp J, Samii M (1993) Introduction of a score system for the clinical evaluation of patients with spinal processes. Acta Neurochir 123:221–223

    PubMed  CAS  Google Scholar 

  48. Greenberg JK, Milner E, Yarbrough CK, Lipsey K, Piccirillo JF, Smyth MD, Park TS, Limbrick DD (2015) Outcome methods used in clinical studies of Chiari malformation type I: a systematic review. J Neurosurg 122(2):262–272. https://doi.org/10.3171/2014.9.JNS14406

    Article  PubMed  Google Scholar 

  49. Prasad GK et al (2016) Coexistent supratentorial and infratentorial subdural hygromas with hydrocephalus after Chiari decompression surgery: review of literature. World Neurosurg 93:208–214

    Article  PubMed  Google Scholar 

  50. Rossini Z, Milani D, Costa F, Castellani C, Lasio G, Fornari M (2017) Subdural fluid collection and hydrocephalus after foramen magnum decompression for Chiari malformation type I: management algorithm of a rare complicatio. World Neurosurg 106:1057.e9–1057.e15. https://doi.org/10.1016/j.wneu.2017.07.112

    Article  Google Scholar 

  51. Feghali J, Marinaro E, Yangiran X et al (2020) Emergency department visits following suboccipital decompression for adult Chiari malformation type I. World Neurosurg 144:e789–e796

    Article  PubMed  PubMed Central  Google Scholar 

  52. James M, Schuster JM, Zhang F, Norvell DC (2013) Hermsmeyer JT (2013), Persistent/recurrent syringomyelia after chiari decompression—natural history and management strategies: a systematic review. Evid Based Spine Care J 4:116–125

    Article  Google Scholar 

  53. Klekamp J (2012) Neurological deterioration after foramen magnum decompression for Chiari malformation type I: old or new pathology? J Neurosurg Pediatric 10(6):538–547. https://doi.org/10.3171/2012.9.PEDS12110

  54. Silva A, Thanabalasundaram G, Wilkinson B, Tsermoulas G, Flint G (2020) Experience with revision craniovertebral decompression in adult patients with Chiari malformation type 1, with or without syringomyelia. British J Neurosurg DOI:1–6. https://doi.org/10.1080/02688697.2020.1823935

  55. Loe ML, Vivas-Buitrago T, Domingo RA et al (2020) Prognostic significance of C1–C2 facet malalignment after surgical decompression in adult Chiari malformation type I: a pilot study based on the Chicago Chiari Outcome Scale. J Neurosurg Spine 16:1–7

    Google Scholar 

  56. Du YQ, Qiao GY, Yin YH, Li T, Yu XG (2020) Posterior atlantoaxial facet joint reduction, fixation and fusion as revision surgery for failed suboccipital decompression in patients with basilar invagination and atlantoaxial dislocation: operative nuances, challenges and outcomes. Clin Neurol Neurosurg 194:105793

    Article  PubMed  Google Scholar 

  57. Soleman J, Roth G, Bartoli A et al (2017) Syringo-subarachnoid shunt for the treatment of persistent syringomyelia following decompression in Chiari type I malformation: surgical results. World Neurosurg 108:836–843

    Article  PubMed  Google Scholar 

  58. Ghobrial GM (2015) Arachnolysis or cerebrospinal fluid diversion for adult-onset syringomyelia? A systematic review of the literature. World Neurosurg 83(5):829–835. https://doi.org/10.1016/j.wneu.2014.06.044

    Article  PubMed  Google Scholar 

  59. Batzdorf U (2005) Primary spinal syringomyelia. J Neurosurg Spine 3:429–435

    Article  PubMed  Google Scholar 

  60. Roy AK, Slimack NP, Ganju A (2011) Idiopathic syringomyelia: retrospective case series, comprehensive review, and update on management. Neurosurg Focus 31(6):E15

    Article  PubMed  Google Scholar 

  61. Bonfield CM, Levi AD, Arnold PM, Okonkwo DO (2010) Surgical management of post traumatic syringomyelia. Spine 35(21S):S245–S258. https://doi.org/10.1097/BRS.0b013e3181f32e9c

    Article  PubMed  Google Scholar 

  62. Kleindienst A, Laut FM, Roeckelein V, Buchfelder M, Dodoo-Schittko F (2020) Treatment of posttraumatic syringomyelia: evidence from a systematic review. Acta Neurochir (Wien) 1 62(10):2541–2556. https://doi.org/10.1007/s00701-020-04529-w

    Article  Google Scholar 

  63. Klekamp J, Batzdorf U, Samii M, Bothe HW (1997) Treatment of syringomyelia associated with arachnoid scarring caused by arachnoiditis or trauma. J Neurosurg 86:233–240

    Article  PubMed  CAS  Google Scholar 

  64. Cacciola F, Capozza M, Perrini P, Benedetto N, Di Lorenzo N (2009) Syringopleural shunt as a rescue procedure in patients with syringomyelia refractory to restoration of cerebrospinal fluid flow. Neurosurgery 65(3):471–476. https://doi.org/10.1227/01.NEU.0000350871.47574.DE

    Article  PubMed  Google Scholar 

  65. Massimi L, Dellapepa GM, Tamburrini G, Di Rocco C (2011) Sudden onset of Chiari malformation type I in previously asymptomatic patients. Report of 3 cases. J Neurosurg Pediatrics 8:438–442

    Article  Google Scholar 

  66. Valentini LG, Visintini S, Mendoal C, et al. (2005) The role of intraoperative electromyographic monitoring in lumbosacral lipomas. Operative Neurosurgery 56(ONS Suppl 2):315-323

  67. Prestor B, Benedicic M (2008) Electrophysiologic and clinical data support the use of dorsal root entry zone myelotomy in syringosubarachnoid shunting for syringomyelia. Surgical Neurology 69;466- 473

  68. Verla T, Fridley J, Khan AB et al (2016) Neuromonitoring for intramedullary spinal cord tumor surgery. World Neurosurgery 96:108–116. https://doi.org/10.1016/j.wneu.2016.07.066

    Article  Google Scholar 

  69. Henderson FC, Francomano CA, Koby M et al (2019) Cervical medullary syndrome secondary to craniocervical instability and ventral brainstem compression in hereditary hypermobility connective tissue disorders: 5-year follow-up after craniocervical reduction, fusion, and stabilization. Neurosurg Rev 42(4):915–936. https://doi.org/10.1007/s10143-018-01070-4

    Article  PubMed  PubMed Central  Google Scholar 

  70. El Asri AC, Akhaddar A, Gazzaz M et al (2010) Dynamic CT scan of the craniovertebral junction: a role in the management of os odontoideum. Neurol Neurochir Pol 44(6):603–608

    Article  PubMed  Google Scholar 

  71. Klekamp J (2015) Chiari I malformation with and without basilar invagination: a comparative study. Neurosurg Focus 38(4):E12

    Article  PubMed  Google Scholar 

  72. Vitali M, Canevari FR, Cattalani A, Somma T, Grasso VM, Barbanera A (2019) Stability-sparing endoscopic endonasal odontoidectomy in a malformative craniovertebral junction: case report and biomechanical considerations. In: Visocchi M. (eds) New Trends in craniovertebral junction surgery. Acta Neurochir Suppl 125 Springer, Cham

  73. de Oliveira SU, de Oliveira MF, Heringer LC, Santos Barcelos ACE, Vieira Botelho R (2018) The effect of posterior fossa decompression in adult Chiari malformation and basilar invagination: a systematic review and meta-analysis. Neurosurg Rev 41(1):311–321

  74. Goel A, Bhatjiwale M, Desai K (1998) Basilar invagination: a study based on 190 surgically treated patients. J Neurosurg 88(6):962–968

    Article  PubMed  CAS  Google Scholar 

  75. Yeom JS, Buchowski JM, Kim HJ, Chang BS, Lee CK, Riew KD (2013) Risk of vertebral artery injury: comparison between C1–C2 transarticular and C2 pedicle screws. Spine J 13(7):775–785

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like also to thank the following Patients’ Associations for their participation and support (in alphabetical order): AICRA for Craniosynostosis (Italy), AISMAC (Italy), APAISER (France), ASAP (USA), Bobby Jones Chiari & Syringomyelia Foundation’s (USA), Deutsche Syringomyelie und Chiari Malformation (Germany), FEMACPA (Spain), National Syringomyelia Association (Bulgaria), SACA (Ireland).

International Experts Jury of the Chiari & Syringomyelia Consensus Conference: list of affiliations

  • Andrea Barbanera, Department of Neurosurgery, “SS Antonio e Biagio e Cesare Arrigo” Hospital, Alessandria, Italy

  • Alessandro Bertuccio, Department of Neurosurgery, “SS Antonio e Biagio e Cesare Arrigo” Hospital, Alessandria, Italy

  • Paolo Bolognese, Chiari Neuosurgical Center, Mount Sinai, South Nassau, Oceanside (NY), US

  • Andrew Brodbelt, Consultant Neurosurgeon, The Walton Centre NHS Foundation Trust, Liverpool, UK

  • Carlo Celada, AISMAC, Italy

  • Luisa Chiapparini, Service of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

  • Palma Ciaramitaro, CRESSC, Department of Neuroscience, AOU Citta’ della Salute e della Scienza di Torino, Torino, Italy

  • Dario Cocito, Istituti Clinici Scientifici Maugeri, Torino, Italy

  • Marcella Curone, Casa di Cura del Policlinico, Igea Headache Center, Milan, Italy

  • Grazia Devigili, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta. Milan, Italy

  • Alessandra Erbetta, Service of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

  • Marilena Ferraris, Service of Neuroradiology, Diagnostic Imaging Department, AOU Citta’ della Salute e della Scienza di Torino, Torino, Italy

  • Marika Furlanetto, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

  • Diego Garbossa, Department of Neurosurgery, University of Torino, Torino, Italy

  • Mado Gilanton, APAISER, France

  • George Jallo, Johns Hopkins University Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, US

  • Marieta Karadjova, Neurology Department, University of Sofia, Sofia, Bulgaria

  • Jörg Klekamp, Christliches Krankenhaus Quakenbrück, Department of Neurosurgery, Quakenbrück, Germany

  • Fulvio Massaro, Department of Neurosurgery, University of Torino, Torino, Italy

  • Luca Massimi, Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

  • Sylvia Morar, Neurosurgery Department, Reference Center Rares Diseases C-MAVEM, CHU Bicetre APHP, Paris, France

  • Fabrice Parker, Neurosurgery Department, Reference Center Rares Diseases C-MAVEM, CHU Bicetre APHP, Paris, France

  • Paola Peretta, Pediatric Neurosurgery, Ospedale Infantile Regina Margherita, AOU Citta’ della Salute e della Scienza di Torino, Torino, Italy

  • Paolo Perrini, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy

  • Maria Antonia Poca, Neurosurgery and Pediatric Neurosurgery, Vall d’Hebron Hospital Universitari, Neurotrauma and Neurosurgery Research Unit, and Universitat Autònoma de Barcelona, Barcelona, Spain.

  • Juan Sahuquillo, Neurosurgery and Pediatric Neurosurgery, Vall d’Hebron Hospital Universitari, Neurotrauma and Neurosurgery Research Unit, and Universitat Autònoma de Barcelona, Barcelona, Spain.

  • Marcus Stoodley, The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia.

  • Giuseppe Talamonti, Department of Neurosurgery, ASST Niguarda, Milan, Italy

  • Fabio Triulzi, Neuroradiology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy

  • Maria Consuelo Valentini, Service of Neuroradiology, Diagnostic Imaging Department, AOU Citta’ della Salute e della Scienza di Torino, Torino, Italy

  • Massimiliano Visocchi, Department of Neurosurgery, Catholic University School of Medicine, Rome, Italy

  • Laura Valentini, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

Data and materials availability

Data is available at the reader’s request.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Palma Ciaramitaro, Luca Massimi, Alessandro Bertuccio, Alessandra Solari, Mariangela Farinotti, Paola Peretta, Veronica Saletti, Andrea Barbanera, Diego Garbossa, and Laura Valentini. The first draft of the manuscript was written by Palma Ciaramitaro and Laura Valentini, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Palma Ciaramitaro.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original published online version does not include the full list of authors. The correct author names are given above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciaramitaro, P., Massimi, L., Bertuccio, A. et al. Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document. Neurol Sci 43, 1327–1342 (2022). https://doi.org/10.1007/s10072-021-05347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05347-3

Keywords

Navigation