Skip to main content
Log in

Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We present a local convergence analysis of a sixth order iterative method for approximate a locally unique solution of an equation defined on the real line. Earlier studies such as Sharma et al. (Appl Math Comput 190:111–115, 2007) have shown convergence of these methods under hypotheses up to the fifth derivative of the function although only the first derivative appears in the method. In this study we expand the applicability of these methods using only hypotheses up to the first derivative of the function. Numerical examples are also presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King’s and Jarratt iterations. Aequ. Math. 69, 212–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyros, I.K.: Convergence and Application of Newton-type Iterations. Springer, New York (2008)

    MATH  Google Scholar 

  3. Argyros, I.K., Hilout, Said: Computational Methods in Nonlinear Analysis. World Scientific Publ. Co., New Jersey (2013)

    Book  MATH  Google Scholar 

  4. Argyros, I.K., Chen, D., Quian, Q.: The Jarratt method in Banach space setting. J. Comput. Appl. Math. 51, 103–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Argyros, I.K., George, S., Alberto, A.: Magrenan, high convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

    Article  MathSciNet  Google Scholar 

  6. Argyros, I.K., George, S.: Ball comparison between two optimal eight-order methods under weak conditions. SeMA Journal Boletin de la Sociedad Espaola de Matemtica Aplicada (2015). doi:10.1007/s40324-015-0035-z

    MathSciNet  MATH  Google Scholar 

  7. Argyros, I.K., George, S.: Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weak conditions. Int. J. Appl. Comput. Math. doi:10.1007/s40819-015-0078-y

  8. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chun, C., Neta, B., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)

    MathSciNet  Google Scholar 

  10. Cordero, A., Maimo, J., Torregrosa, J., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frontini, M., Sormani, E.: Some variants of Newton’s method with third order convergence. Appl. Math. Comput. 140, 419–426 (2003)

    MathSciNet  MATH  Google Scholar 

  12. King, R.F.: A family of fourth-order methods for nonlinear equations. SIAM. J. Numer. Anal. 10, 876–879 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iterations. J. Appl. Comput. Math. 21, 643–651 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Noor, M.A.: Some applications of quadrature formulas for solving nonlinear equations. Nonlinear Anal. Forum 12(1), 91–96 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  16. Petkovic, M.S., Neta, B., Petkovic, L., Džunič, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  17. Potra, F.A., Ptak, V.: Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, vol. 103. Pitman Publ., Boston (1984)

    MATH  Google Scholar 

  18. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. In: Tikhonov, A.N., et al. (eds.) Mathematical Models and Numerical Methods Publications, vol. 3(19), pp. 129–142. Banach Center, Warsaw

  19. Sharma, J.R., Guha, R.K.: A family of modified Ostrowski methods with accelerated sixth order convergence. Appl. Math. Comput. 190, 111–115 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhosh George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., George, S. Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions. Calcolo 53, 585–595 (2016). https://doi.org/10.1007/s10092-015-0163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-015-0163-y

Keywords

Mathematics Subject Classification

Navigation