Skip to main content

Advertisement

Log in

Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this work is to review the available literature on the details of low-level laser therapy (LLLT) use for the enhancement of the proliferation of various cultured cell lines including stem cells. A cell culture is one of the most useful techniques in science, particularly in the production of viral vaccines and hybrid cell lines. However, the growth rate of some of the much-needed mammalian cells is slow. LLLT can enhance the proliferation rate of various cell lines. Literature review from 1923 to 2010. By investigating the outcome of LLLT on cell cultures, many articles report that it produces higher rates of ATP, RNA, and DNA synthesis in stem cells and other cell lines. Thus, LLLT improves the proliferation of the cells without causing any cytotoxic effects. Mainly, helium neon and gallium-aluminum-arsenide (Ga-Al-As) lasers are used for LLLT on cultured cells. The results of LLLT also vary according to the applied energy density and wavelengths to which the target cells are subjected. This review suggests that an energy density value of 0.5 to 4.0 J/cm2 and a visible spectrum ranging from 600 to 700 nm of LLLT are very helpful in enhancing the proliferation rate of various cell lines. With the appropriate use of LLLT, the proliferation rate of cultured cells, including stem cells, can be increased, which would be very useful in tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freshney RI (1994) Culture of Animal Cells: A Manual of Basic Technique, 3rd edn. Alan R Liss Inc, New York

    Google Scholar 

  2. Paul J (1975) Cell and Tissue Culture, 5th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  3. Rothblat GH, Cristofalo VJ (1972) Growth. Academic Press, New York

    Google Scholar 

  4. Mather J, Barnes D (1998) Animal Cell Culture Methods, Volume 57. Academic Press, San Diego

    Google Scholar 

  5. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39

    Article  PubMed  CAS  Google Scholar 

  6. Gasparyan VC (2000) Method of determination of aortic valve parameters for its reconstruction with autopericardium: an experimental study. J Thorac Cardiovasc Surg 119:386–387

    Article  PubMed  CAS  Google Scholar 

  7. Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns. Lasers Surg Med 9:174–182

    Article  PubMed  CAS  Google Scholar 

  8. Kemmotsu O, Sato K, Furomido H, Harada K, Takigawa C, Kaseno S (1991) Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia. Laser Therapy 3:1–75

    Google Scholar 

  9. Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55

    Article  Google Scholar 

  10. Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378

    Article  PubMed  Google Scholar 

  11. Kamali F, Bayat M, Torkaman G, Ebrahimi E, Salavati M (2007) The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B 88:11–15

    Article  PubMed  CAS  Google Scholar 

  12. Forney R, Mauro T (1999) Using lasers in diabetic wound healing. Diabetes Technol Ther 1:189–192

    Article  PubMed  CAS  Google Scholar 

  13. Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T (2001) Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res 73:291–302

    Article  PubMed  CAS  Google Scholar 

  14. Ohshiro T, Calderhead RG (1988) Low-level laser therapy: a practical introduction. Wiley, New York, pp 17, 28–30, 33, 34

  15. Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low-level light therapy. Dose Response 7:358–383

    Article  PubMed  Google Scholar 

  16. Bolten P, Young S, Dyson M (1995) The direct effect of 860 nm light on cell proliferation and on succinic dehydrogenase activity of human fibroblasts in vitro. Laser Ther 7:55–60

    Article  Google Scholar 

  17. Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ (2005) Low-power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med 37:161–171

    Article  PubMed  Google Scholar 

  18. Kushibiki T, Awazu K (2009) Blue laser irradiation enhances extracellular calcification of primary mesenchymal stem cells. Photomed Laser Surg 27:493–498

    Article  PubMed  CAS  Google Scholar 

  19. Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He-Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546

    PubMed  CAS  Google Scholar 

  20. Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134

    Google Scholar 

  21. Quickenden T, Daniels L (1993) Attempted biostimulation of division in Saccharomyces cerevisiae using red coherent light. Photochem Photobiol 57:272–278

    Article  PubMed  CAS  Google Scholar 

  22. Schneede P, Jelkmann W, Schramm U, Fricke H, Steinmetz M, Hofstetter A (1988) Effects of the helium-neon laser on rat kidney epithelial cells in culture. Lasers Med Sci 3:249–257

    Article  Google Scholar 

  23. Pogrel MA (1991) Application of laser and cryosurgery in oral and maxillofacial surgery. Curr Opin Dentistry 1:263–270

    CAS  Google Scholar 

  24. Yu HS, Chang KL, Yu CL, Chen JW, Chen GS (1996) Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107:593–596

    Article  PubMed  CAS  Google Scholar 

  25. Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235:374–380

    Article  PubMed  CAS  Google Scholar 

  26. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496

    Article  PubMed  CAS  Google Scholar 

  27. Stadler I, Evans R, Kolb B et al (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261

    Article  PubMed  CAS  Google Scholar 

  28. Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469

    PubMed  CAS  Google Scholar 

  29. Jia YL, Guo ZY (2004) Effect of low-power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 34:323–328

    Article  PubMed  Google Scholar 

  30. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    Article  PubMed  CAS  Google Scholar 

  31. Zhang L, Xing D, Gao X, Wu S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219:553–562

    Article  PubMed  CAS  Google Scholar 

  32. Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27:219–223

    Article  PubMed  CAS  Google Scholar 

  33. Corr L, Burnstock G (1994) Analysis of P2-purinoceptor subtypes on the smooth muscle and endothelium of rabbit coronary artery. J Cardiovasc Pharmacol 23:709–715

    Article  PubMed  CAS  Google Scholar 

  34. Kalthof B, Bechem M, Flocke K, Pott L, Schramm M (1996) Kinetics of ATP-induced Ca21 transients in cultured pig aortic smooth muscle cells depend on ATP concentration and stored Ca2+. J Physiol (Lond) 466:245–262

    Google Scholar 

  35. Kitajima S, Ozaki H, Karaki H (1994) Role of different subtypes of P2 purinoceptor on cytosolic Ca2+ levels in rat aortic smooth muscle. Eur J Pharmacol 266:263–267

    Article  PubMed  CAS  Google Scholar 

  36. Malam-Souley R, Seye C, Gadeau AP et al (1996) Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. J Cell Physiol 166:57–65

    Article  PubMed  CAS  Google Scholar 

  37. Wilden P, Agazie Y, Kaufman R, Halenda S (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am J Physiol Heart Circ Physiol 275:1209–1215

    Google Scholar 

  38. Shefer G, Barash I, Oron U, Halevy O (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139

    Article  PubMed  CAS  Google Scholar 

  39. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  40. Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38:200–211

    Article  PubMed  CAS  Google Scholar 

  41. Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448:372–380

    Article  PubMed  CAS  Google Scholar 

  42. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: A role for the MAPK/ERK pathway. J Cell Physiol 187:73–80

    Article  PubMed  CAS  Google Scholar 

  43. Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X (2006) Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol 206:441–448

    Article  PubMed  CAS  Google Scholar 

  44. Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217:518–528

    Article  PubMed  CAS  Google Scholar 

  45. Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM (2002) Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 277:24967–24975

    Article  PubMed  CAS  Google Scholar 

  46. Kawakami Y, Nishimoto H, Kitaura J et al (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279:47720–47725

    Article  PubMed  CAS  Google Scholar 

  47. Partovian C, Simons M (2004) Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase C alpha in endothelial cells. Cell Signal 16:951–957

    Article  PubMed  CAS  Google Scholar 

  48. Bentley JK, Newcomb DC, Goldsmith AM, Jia Y, Sajjan US, Hershenson MB (2007) Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells. J Virol 81:1186–1194

    Article  PubMed  CAS  Google Scholar 

  49. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17

    Article  PubMed  CAS  Google Scholar 

  50. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low-power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552

    Article  PubMed  CAS  Google Scholar 

  51. Jou MJ, Jou SB, Chen HM, Lin CH, Peng TI (2002) Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci 9:507–516

    Article  PubMed  CAS  Google Scholar 

  52. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704

    Article  PubMed  CAS  Google Scholar 

  53. Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631

    Article  PubMed  CAS  Google Scholar 

  54. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low-power laser irradiation. J Biomedical Sci 16:4

    Article  CAS  Google Scholar 

  55. Xu X, Zhao X, Liu TCY, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202

    Article  PubMed  CAS  Google Scholar 

  56. Karu T (2003) Low-Power Laser Therapy. In: Vo-Dinh T (ed) Biomedical Photonics Handbook Volume 48. CRC Press, Boca Raton, pp 1–25

    Google Scholar 

  57. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099

    Article  PubMed  CAS  Google Scholar 

  58. Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68:407–413

    Article  PubMed  CAS  Google Scholar 

  59. Kokoska ER, Wolff AB, Smith GS, Miller TA (2000) Epidermal growth factor-induced cytoprotection in human intestinal cells involves intracellular calcium signaling. J Surg Res 88:97–103

    Article  PubMed  CAS  Google Scholar 

  60. Duan R, Liu TCY, Li Y, Guo H, Yao LB (2001) Signal transduction pathways involved in low-intensity He-Ne laser-induced respiratory burst in bovine neutrophils: a potential mechanism of low-intensity laser biostimulation. Lasers Surg Med 29:174–178

    Article  PubMed  CAS  Google Scholar 

  61. Krizaj D, Copenhagen DR (2002) Calcium regulation in photoreceptors. Front Biosci 7:d2023–d2044

    Article  PubMed  CAS  Google Scholar 

  62. Lavi R, Shainberg A, Friedmann H et al (2003) Low-energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922

    Article  PubMed  CAS  Google Scholar 

  63. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780-nm low-power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218

    Article  PubMed  CAS  Google Scholar 

  64. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318

    Article  PubMed  CAS  Google Scholar 

  65. Oren DA, Charney D, Lavie R, Sinyakov M, Lubart R (2001) Stimulation of reactive oxygen species production by an antidepressant visible light source. Biol Psychiatry 49:464–467

    Article  PubMed  CAS  Google Scholar 

  66. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  PubMed  CAS  Google Scholar 

  67. Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low-level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376

    Article  PubMed  Google Scholar 

  68. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714

    Article  PubMed  CAS  Google Scholar 

  69. Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium-Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057

    Article  CAS  Google Scholar 

  70. Karu TI (1998) Primary and secondary mechanisms of the action of monochromatic visible and near infrared radiation on cells. In: The science of low-power laser therapy. Gordon and Breach Science, Amsterdam

    Google Scholar 

  71. Simunovic Z (2000) Lasers in Medicine and Dentistry. Rijeka, Vitagraf, Zagreb, Croatia

    Google Scholar 

  72. Ailioaie LM, Chiran DA, Ailioaie CC (2005) Biophysical and physiological mechanisms of low-energy lasers interactions with living cells and their implications in pain treatment. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII “AL. I. CUZA” IAŞI, Tomul I, s. Biofizică, Fizică medicală şi Fizica mediului

  73. Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77

    Google Scholar 

  74. Anders JJ, Borke RC, Woolery SK, Merwe WP (1993) Low-power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82

    Article  PubMed  CAS  Google Scholar 

  75. Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42:191–195

    Article  PubMed  CAS  Google Scholar 

  76. Nanami T, Shiba H, Ikeuchi S, Nagai T, Asanami S, Shibata T (1993) Clinical applications and basic studies of laser in dentistry and oral surgery. Keio J Med 42:199–201

    PubMed  CAS  Google Scholar 

  77. Luger EL, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102

    Article  PubMed  CAS  Google Scholar 

  78. Zeischegg DC (2003) Low-level laser therapy (LLLT) [On-line]

  79. Hawkins D, Abrakamse H (2005) Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Sur 23:251–259

    Article  CAS  Google Scholar 

  80. Karu TI (1989) Photobiology of low-power laser effects. Health Phys 56:691–704

    Article  PubMed  CAS  Google Scholar 

  81. Loevshall H, Renholt-Bindslev D (1994) Effect of low-level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14:347–354

    Article  Google Scholar 

  82. Karu TI (1990) Effects of visible radiation on cultured cells. Photochem Photobiol 52:1089–1098

    Article  PubMed  CAS  Google Scholar 

  83. Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B (1992) Soft tissue reactions to de novo plaque formation at implants and teeth: An experimental study in the dog. Clin Oral Implants Res 3:1–8

    Article  PubMed  CAS  Google Scholar 

  84. Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I (1992) Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B 12:305–310

    Article  PubMed  CAS  Google Scholar 

  85. Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871

    Article  PubMed  CAS  Google Scholar 

  86. Takac S, Stojanovic S (1998) Diagnostic and biostimulating lasers. Med Preg 51:245–249

    CAS  Google Scholar 

  87. Pinheiro AL, Carneiro NS, Vieira AL et al (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20:23–26

    Article  PubMed  Google Scholar 

  88. Smith K (1991) Light and life: the photobiological basis of the therapeutic use of radiation from lasers. In: Progress in laser therapy: Selected papers from the October 1990 ILTA Congress. Wiley, New York

    Google Scholar 

  89. Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low-intensity laser therapy: a review. J Invest Med 48:312–326

    CAS  Google Scholar 

  90. Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to mitochondrial energy transfer. J Clin Laser Med Surg 16:159–165

    PubMed  CAS  Google Scholar 

  91. Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):167–170

    Article  PubMed  CAS  Google Scholar 

  92. Pourreau-Schneider N, Ahmed A, Soudry A et al (1990) Helium-neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol 137(1):171–178

    PubMed  CAS  Google Scholar 

  93. Steinlechner C, Dysonm M (1993) The effects of low-level laser therapy on the proliferation of keratinocytes. Laser Ther 5:65–73

    Google Scholar 

  94. Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ (1990) Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol 94(6):822–826

    Article  PubMed  CAS  Google Scholar 

  95. Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C (1989) Macrophage responsiveness to light therapy. Lasers Surg Med 9(5):497–505

    Article  PubMed  CAS  Google Scholar 

  96. Zheng H, Qin JZ, Xin H, Xin SY (1992) The activating actions of low-level helium neon laser radiation on macrophages in the mouse model. Laser Ther 4:55–59

    Google Scholar 

  97. Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670-nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148(2):334–336

    Article  PubMed  CAS  Google Scholar 

  98. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12

    Article  PubMed  Google Scholar 

  99. Pogrel MA, Chen JW, Zhang K (1997) Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Laser Surg Med 20(4):426–432

    Article  CAS  Google Scholar 

  100. Almeida-Lopes L, Rigau J, Zângaro RA, Guiduli-Neto J, Jaeger MMM (2001) Comparison of the low-level therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184

    Article  PubMed  CAS  Google Scholar 

  101. Pereira AN, Eduardo CP, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267

    Article  PubMed  Google Scholar 

  102. Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d’Hoedt B (2003) Low-level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369

    Article  Google Scholar 

  103. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultra structure of human gingival fibroblasts. Lasers Surg Med 34:260–265

    Article  PubMed  Google Scholar 

  104. Karu TI (1991) Low-intensity laser light action upon fibroblasts and lymphocytes. In: Progress in laser therapy: Selected papers from the October 1990 ILTA Congress. Wiley, New York

    Google Scholar 

  105. Calabrese EJ (2001) The future of hormesis: where do we go from here? Crit Rev Toxicol 31:637–648

    Article  PubMed  CAS  Google Scholar 

  106. Stebbing AR (1982) Hormesis; the stimulation of growth by low-levels of inhibitors. Sci Tot Environ 22:213–234

    Article  CAS  Google Scholar 

  107. Calabrese EJ (2005) Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35:289–295

    Google Scholar 

  108. Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter TA Sr, Brondon P, Olson D (2007) Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med 39:534–542

    Article  PubMed  Google Scholar 

  109. Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben HS (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211

    Article  PubMed  CAS  Google Scholar 

  110. Chow RT, Heller GZ, Barnsley L (2006) The effect of 300-mW, 830-nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210

    Article  PubMed  Google Scholar 

  111. Lubart R, Lavi R, Friedmann H, Rochkind S (2006) Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 24:179–185

    Article  PubMed  CAS  Google Scholar 

  112. Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg 19:29–33

    Article  PubMed  CAS  Google Scholar 

  113. Martius F (1923) Das Amdt-Schulz Grandgesetz. Munch Med Wschr 70:1005–1006

    Google Scholar 

  114. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transp 30(4):215–222

    Article  CAS  Google Scholar 

  115. Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Article  PubMed  Google Scholar 

  116. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  PubMed  CAS  Google Scholar 

  117. Prockop DJ, Olson SD (2007) Clinical trials with adult stem/progenitor cells for tissue repair: Let’s not overlook some essential precautions. Blood 109(8):3147–3151

    Article  PubMed  CAS  Google Scholar 

  118. Caplan AI (2005) Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211

    Article  PubMed  CAS  Google Scholar 

  119. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46(7):1339–1350

    Article  PubMed  CAS  Google Scholar 

  120. Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK (2005) Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 112(9 Suppl):I123–I128

    PubMed  Google Scholar 

  121. Kutschka I, Kofidis T, Chen IY et al (2006) Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 114(1 Suppl):I174–I180

    PubMed  Google Scholar 

  122. Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733

    Article  PubMed  Google Scholar 

  123. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  124. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  125. Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cell Mol Dis 27:677–690

    Article  CAS  Google Scholar 

  126. Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214

    Article  PubMed  CAS  Google Scholar 

  127. Dennis JE, Caplan AI (2004) Bone marrow mesenchymal stem cells. In: Sell S (ed) Stem cells handbook. Humana Press Inc, Totowa, NJ, pp 107–117

    Google Scholar 

  128. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354

    Article  PubMed  CAS  Google Scholar 

  129. Lunger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102

    Article  Google Scholar 

  130. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291

    Article  PubMed  CAS  Google Scholar 

  131. Abramovitch-Gottlib L, Gross T, Naveh D et al (2005) Low-level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146

    Article  PubMed  Google Scholar 

  132. Kim HK, Kim JH, Abbas AA et al (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222

    Article  PubMed  Google Scholar 

  133. Eduardo Fde P, Bueno DF, de Freitas PM et al (2008) Stem cell proliferation under low-intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438

    Article  PubMed  Google Scholar 

  134. Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low-level laser irradiation on adult human adipose-derived stem cells. Lasers Med Sci 23(3):277–282

    Article  PubMed  CAS  Google Scholar 

  135. Abergel RP, Lam TS, Meker CA (1984) Biostimulation of procollagen production by low-energy lasers in human skin fibroblast cultures. J Invest Dermatol 82:395–402

    Google Scholar 

  136. Fava G, Marchesini R, Melloni E, Milani M, Schiroli A (1986) Effect of low-energy irradiation by He-Ne laser on mitosis rate of HT-29 tumor cells in culture. Lasers Life Sci 1:135–141

    Google Scholar 

  137. Karu TI, Pyatibrat LV, Kalendo GS, Esenalie RO (1996) Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med 18:171–177

    Article  PubMed  CAS  Google Scholar 

  138. Kipshidze N, Nikolaychik V, Keelan MH et al (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364

    Article  PubMed  CAS  Google Scholar 

  139. Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, Hoedt B (2002) Low-level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369

    Article  PubMed  Google Scholar 

  140. Fujihara NA, Hiraki KRN, Marque MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336

    Article  PubMed  Google Scholar 

  141. Gavish L, Perez L, Gertz SD (2006) Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med 38:779–786

    Article  PubMed  Google Scholar 

  142. Nascimento RX, Callera F (2006) Low-level laser therapy at different energy densities (0.1–2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomed Laser Surg 24(5):601–604

    Article  PubMed  Google Scholar 

  143. Eduardo FP, Mehnert DU, Monezi TA et al (2007) Cultured epithelial cells response to phototherapy with low-intensity laser. Lasers Surg Med 39:365–372

    Article  PubMed  Google Scholar 

  144. Hawkins D, Abrahamse H (2007) Influence of broad-spectrum and infrared light in combination with laser irradiation on the proliferation of wounded skin fibroblasts. Photomed Laser Surg 25(3):159–169

    Article  PubMed  CAS  Google Scholar 

  145. Oron U, Ilic S, Taboada LD, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182

    Article  PubMed  CAS  Google Scholar 

  146. Benedicenti S, Mario Pepe I, Angiero F, Benedicenti A (2008) Intracellular ATP Level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453

    Article  PubMed  CAS  Google Scholar 

  147. Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41(6):463–469

    Article  PubMed  Google Scholar 

  148. Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T, Takamatsu T (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41(3):232–239

    Article  PubMed  Google Scholar 

  149. Mvula B, Moore TJ, Abrahamse H (2010) Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci 25(1):33–39

    Article  PubMed  CAS  Google Scholar 

  150. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23(2):211–215

    Article  PubMed  Google Scholar 

  151. Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89

    Article  PubMed  Google Scholar 

  152. Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30(4):353–358

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid M. AlGhamdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlGhamdi, K.M., Kumar, A. & Moussa, N.A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27, 237–249 (2012). https://doi.org/10.1007/s10103-011-0885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0885-2

Keywords

Navigation