Skip to main content

Advertisement

Log in

The impact of antimicrobial photodynamic therapy in an artificial biofilm model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The susceptibility of bacterial cultures in biofilm formations is important for a variety of clinical treatment procedures. Therefore, the aim of the study was to assess the impact of laser-induced antimicrobial photodynamic therapy on the viability of Streptococcus mutans cells employing an artificial biofilm model. Using sterile chambered coverglasses, a salivary pellicle layer was formed in 40 chambers. Streptococcus mutans cells were inoculated in a sterile culture medium. Employing a live/dead bacterial viability kit, bacteria with intact cell membranes stained fluorescent green. Each pellicle-coated test chamber was filled with 0.7 ml of the bacterial suspension and analysed using a confocal laser scanning microscope within a layer of 10 μm at intervals of 1 μm from the pellicle layer. Phenothiazine chloride was used as a photosensitizer in all 40 test chambers. A diode laser (wavelength 660 nm, output power 100 mW) was used to irradiated 20 chambers for 2 min. Fluorescence values in the test chambers after laser irradiation (median 2.1 U, range 0.4–3.4 U) were significantly lower than baseline values after adding the photosensitizer (median 3.6 U, range 1.1–9.0; p < 0.05). The non-irradiated control chambers showed no change in fluorescence at the end of an additional photosensitizer residence time of 2 min without laser irradiation (median 1.9 U, range 0.7–3.6; median 1.9 U, range 0.8–6.0, respectively; p > 0.05). The present study indicated that laser irradiation is an essential part of antimicrobial photodynamic therapy to reduce bacteria within a layer of 10 μm. Further studies are needed to evaluate the maximum biofilm thickness that still allows a toxic effect on microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 13:159–170

    Article  Google Scholar 

  2. Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86:694–707

    Article  PubMed  CAS  Google Scholar 

  3. Epe B, Pflaum M, Boiteux S (1993) DNA damage induced by photosensitizers in cellular and cell-free systems. Mutat Res 299:135–145

    Article  PubMed  CAS  Google Scholar 

  4. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    Article  PubMed  CAS  Google Scholar 

  5. Komerik N, MacRobert AJ (2006) Photodynamic therapy as an alternative antimicrobial modality for oral infections. J Environ Pathol Toxicol Oncol 25:487–504

    PubMed  Google Scholar 

  6. Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C, Zizzi A, Fantetti L, Roncucci G, Giacometti A, Offidani A, Provinciali M (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br J Dermatol 164:987–995

    Article  PubMed  CAS  Google Scholar 

  7. Wilson M (2004) Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 3:412–418

    Article  PubMed  CAS  Google Scholar 

  8. Bernimoulin JP (2003) Recent concepts in plaque formation. J Clin Periodontol 30(suppl 5):7–9

    Article  PubMed  Google Scholar 

  9. Westfelt E (1996) Rationale of mechanical plaque control. J Clin Periodontol 23:263–267

    Article  PubMed  CAS  Google Scholar 

  10. Machion L, Andia DC, Lecio G, Nociti FHJr, Casati MZ, Sallum AW, Sallum EA (2006) Locally delivered doxycycline as an adjunctive therapy to scaling and root planing in the treatment of smokers: a 2-year follow-up. J Periodontol 77:606–613

    Article  PubMed  CAS  Google Scholar 

  11. López NJ, Socransky SS, Da Silva I, Japlit MR, Haffajee AD (2006) Effects of metronidazole plus amoxicillin as the only therapy on the microbiological and clinical parameters of untreated chronic periodontitis. J Clin Periodontol 33:648–660

    Article  PubMed  Google Scholar 

  12. Herrera D, Sanz M, Jepsen S, Needleman I, Roldán S (2002) A systematic review on the effect of systemic antimicrobials as an adjunct to scaling and root planing in periodontitis patients. J Clin Periodontol 29:136–159

    Article  PubMed  Google Scholar 

  13. Braun A, Dehn C, Krause F, Jepsen S (2008) Short term clinical effects of adjunctive antimicrobial photodynamic therapy (aPDT) in periodontal treatment – a randomized clinical trial. J Clin Periodontol 35:877–884

    Article  PubMed  CAS  Google Scholar 

  14. Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, Cavaleiro JA, Cunha A, Gomes NC, Alves E, Almeida A (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 20:91–105

    Article  Google Scholar 

  15. Goulart RC, Bolean M, Paulino TP, Thedei GJr, Souza SL, Tedesco AC, Ciancaglini P (2010) Photodynamic therapy in planktonic and biofilm cultures of Aggregatibacter actinomycetemcomitans. Photomed Laser Surg 28(Suppl 1):53–60

    Google Scholar 

  16. Street CN, Gibbs A, Pedigo L, Andersen D, Loebel NG (2009) In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochem Photobiol 85:137–143

    Article  PubMed  CAS  Google Scholar 

  17. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM, Tanner AC, Soukos NS (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44:751–759

    Article  PubMed  CAS  Google Scholar 

  18. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scan microscopy. J Dent Res 79:21–27

    Article  PubMed  CAS  Google Scholar 

  19. Filoche SK, Zhu M, Wu CD (2004) In situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditions. J Dent Res 83:802–806

    Article  PubMed  CAS  Google Scholar 

  20. Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr, Teodoro GR, Zângaro RA, Pacheco MT (2007) The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg 25:513–518

    Article  PubMed  CAS  Google Scholar 

  21. Zanin IC, Gonçalves RB, Junior AB, Hope CK, Pratten J (2005) Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 56:324–330

    Article  PubMed  CAS  Google Scholar 

  22. Wainwright M, Crossley KB (2004) Photosensitizing agents – circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegradation 53:119–126

    Article  CAS  Google Scholar 

  23. Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357

    Article  PubMed  CAS  Google Scholar 

  24. Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47:619–623

    Article  PubMed  CAS  Google Scholar 

  25. Eggeling C, Volkmer A, Seidel CA (2005) Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chemphyschem 6:791–804

    Article  PubMed  CAS  Google Scholar 

  26. Song S, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68:2588–2600

    Article  PubMed  CAS  Google Scholar 

  27. Hope CK, Wilson M (2006) Induction of lethal photosensitization in biofilms using a confocal scanning laser as the excitation source. J Antimicrob Chemother 57:1227–1230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Beate Schiermeyer-Dunkhase for preparing the bacterial cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, M., Kirfel, G., Berthold, M. et al. The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers Med Sci 27, 615–620 (2012). https://doi.org/10.1007/s10103-011-0998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0998-7

Keywords

Navigation