Skip to main content

Advertisement

Log in

The effect of Nd:YAG and Er,Cr:YSGG lasers on the microhardness of human dentin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The current investigation determined the microhardness of dentin tissue irradiated with erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) and neodymium-doped yttrium–aluminum garnet (Nd:YAG) lasers. Thirty non-carious human molars were used in this study. Dentin disks were prepared by horizontal sectioning of one third of the occlusal surface. Halves of dentin specimens were irradiated with 3.5- and 4.5-W Er,Cr:YSGG lasers and with a 2-W Nd:YAG laser. The remaining halves served as controls. The microhardness measurements were recorded with a Vickers surface microhardness tester. The results were statistically evaluated by paired t test and one-way ANOVA (p = 0.05). Laser irradiation has significantly reduced the microhardness of dentin within each group compared to its control. Moreover, statistically significant differences were observed among the different groups (p < 0.05). The 3.5-W Er,Cr:YSGG laser produced the greatest reduction in microhardness of dentin followed by 4.5 W and Nd:YAG laser. The differences between all the groups were statistically significant. It was concluded that both laser devices used in this study have resulted in significant thermal damage and subsequent reduction in dentin microhardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim KS, Kim ME, Shin EJ (2005) Irradiation time and ablation rate of enamel in contact and non-contact irradiation with Er:YAG laser. Photomed Laser Surg 23:216–218

    Article  PubMed  CAS  Google Scholar 

  2. Goldman L, Hornby P, Meyer R, Goldman B (1964) Impact of the laser on dental caries. Nature 25(203):417

    Article  Google Scholar 

  3. Goldman L, Gray JA, Goldman J, Goldman B, Meyer R (1965) Effect of laser beam impacts on teeth. J Am Dent Assoc 70:601–606

    PubMed  CAS  Google Scholar 

  4. Frentzen M, Koort HJ (1990) Lasers in dentistry: new possibilities with advancing laser technology? Int Dent J 40:323–332

    PubMed  CAS  Google Scholar 

  5. Mehl A, Kremers L, Salzman K, Hickel R (1997) 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser. Dent Mater 13:246–251

    Article  PubMed  CAS  Google Scholar 

  6. Eversole LR, Rizoiu I, Kimmel AI (1997) Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system. J Am Dent Assoc 128:1099–1106

    PubMed  CAS  Google Scholar 

  7. Rizoiu I, Kohanghadosh F, Kimmel AI, Eversole LR (1998) Pulpal thermal responses to an erbium, chromium: YSGG pulsed laser hydrokinetic system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 86:220–223

    Article  PubMed  CAS  Google Scholar 

  8. Fried D (2000) IR laser ablation of dental enamel. Proc SPIE 3910:136–148

    Article  CAS  Google Scholar 

  9. Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med 9:338–344

    Article  PubMed  CAS  Google Scholar 

  10. Keller U, Hibst R (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances. II. Light microscopic and SEM investigations. Lasers Surg Med 9:345–351

    Article  PubMed  CAS  Google Scholar 

  11. Hossain M, Nakamura Y, Yamada Y, Kimura Y, Nakamura G, Matsumoto K (1999) Ablation depths and morphological changes in human enamel and dentin after Er: YAG laser irradiation with or without water mist. J Clin Laser Med Surg 17:105–109

    PubMed  CAS  Google Scholar 

  12. Hossain M, Nakamura Y, Yamada Y, Kimura Y, Matsumoto N, Matsumoto K (1999) Effects of Er, Cr:YSGG laser irradiation in human enamel and dentin: ablation and morphological studies. J Clin Laser Med Surg 17:155–159

    PubMed  CAS  Google Scholar 

  13. Ekworapoj P, Sidhu SK, McCabe JF (2007) Effect of different power parameters of Er, Cr:YSGG laser on human dentin. Lasers Med Sci 22:175–182

    Article  PubMed  Google Scholar 

  14. Visuri SR, Gilber JL, Wright DD, Wigdor HA, Walsh JT (1996) Shear strength of composite bonded to Er:YAG laser-prepared dentin. J Dent Res 75:599–605

    Article  PubMed  CAS  Google Scholar 

  15. Harashima T, Kinoshita J, Kimura Y, Brugnera A, Zanin F, Pecora JD (2005) Morphological comparative study on ablation of dental hard tissues at cavity preparation by Er:YAG and Er, Cr:YSGG lasers. Photomed Laser Surg 23:52–55

    Article  PubMed  Google Scholar 

  16. Hossain M, Nakamura Y, Tamaki Y, Yamada Y, Murakami Y, Matsumoto K (2003) Atomic analysis and knoop hardness measurement of the cavity floor prepared by Er, Cr:YSGG laser irradiation in vitro. J Oral Rehabil 30:515–521

    Article  PubMed  CAS  Google Scholar 

  17. Çelik EU, Ergücü Z, Türkün LS, Türkün M (2008) Effect of different laser devices on the composition and microhardness of dentin. Oper Dent 33:496–501

    Article  PubMed  Google Scholar 

  18. Shahabi S, Zendedel S (2010) Atomic analysis and hardness measurement of the cavity prepared by laser. Lasers Med Sci 25:379–383

    Article  PubMed  Google Scholar 

  19. Usumez A, Aykent F (2003) Bond strengths of porcelain laminate veneers to tooth surfaces prepared with acid and Er, Cr:YSGG laser etching. J Prosthet Dent 90:24–30

    Article  PubMed  CAS  Google Scholar 

  20. Usumez S, Orhan M, Usumez A (2002) Laser etching of enamel for direct bonding with an Er, Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofacial Orthop 122:649–656

    Article  PubMed  Google Scholar 

  21. Fuentes V, Ceballos L, Osorio R, Toledano M, Carvalho RM, Pashley D (2004) Tensile strength and microhardness of treated human dentin. Dent Mater 20:522–529

    Article  PubMed  CAS  Google Scholar 

  22. Yoshiyama M, Tay FR, Doi J, Nishitani Y, Yamada T, Itou K, Carvalho RM, Nakajima M, Pashley DH (2002) Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res 81:556–560

    Article  PubMed  CAS  Google Scholar 

  23. Perinka L, Sano H, Hosoda H (1992) Dentin thickness, hardness, and Ca-concentration vs. bond strength of dentin adhesives. Dent Mater 8:229–233

    Article  PubMed  CAS  Google Scholar 

  24. Arcoria CJ, Lippas MG, Vitasek BA (1993) Enamel surface roughness analysis after laser ablation and acid etching. J Oral Rehabil 20:213–214

    Article  PubMed  CAS  Google Scholar 

  25. Lee BS, Lin CP, Lin FH, Li UM, Lan WH (2003) Effect of Nd:YAG laser irradiation on the hardness and elastic modulus of human dentin. J Clin Laser Med Surg 21:41–49

    Article  PubMed  Google Scholar 

  26. Anthony C, Fisher-Cripps AC (2004) Nanoindentation (Mechanical Engineering Series), 2nd edn. Springer, New York, p 26

    Google Scholar 

  27. Meredith N, Sherriff M, Setchell DJ, Swanson SA (1996) Measurement of the microhardness and Young's modulus of human enamel and dentine using an indentation technique. Arch Oral Biol 41:539–545

    Article  PubMed  CAS  Google Scholar 

  28. Lin CP, Lee BS, Lin FH, Kok SH, Lan WH (2001) Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment. J Endod 27:389–393

    Article  PubMed  CAS  Google Scholar 

  29. Angker L, Swain MV, Kilpatrick N (2005) Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. J Biomech 38:1535–1542

    Article  PubMed  Google Scholar 

  30. Lin CP, Douglas WH (1994) Structure–property relations and crack resistance at the bovine dentin-enamel junction. J Dent Res 73:1072–1078

    PubMed  CAS  Google Scholar 

  31. Kuramoto M, Matson E, Turbino ML, Marques RA (2001) Microhardness of Nd:YAG laser irradiated enamel surface. Braz Dent J 12:31–33

    Google Scholar 

  32. Marquez F, Quintana E, Roca I, Salgado J (1993) Physical–mechanical effects of Nd:YAG laser of sound dentine and enamel. Biomaterials 14:313–316

    Article  PubMed  CAS  Google Scholar 

  33. Rohanizadeh R, Legeros RZ, Fan D, Jean A, Daculsi G (1999) Ultrastructural properties of laser-irradiated and heat treated dentin. J Dent Res 78:1829–1835

    Article  PubMed  CAS  Google Scholar 

  34. Carvallo AO, Reis AF, de Oliveira MT, de Freitas PM, Aranha AC, Eduardo CP, Giannini M (2011) Bond strength of adhesive systems to ER, Cr:YSGG laser-irradiated dentin. Photomed Laser Surg 29:747–752

    Article  Google Scholar 

  35. Wigdor H, Abt E, Ashrafi S, Walsh JT (1993) The effect of lasers on dental hard tissues. J Am Dent Assoc 124:65–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research was generously funded by the Jordan University of Science and Technology and Melbourne University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael M. Al-Omari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Omari, W.M., Palamara, J.E. The effect of Nd:YAG and Er,Cr:YSGG lasers on the microhardness of human dentin. Lasers Med Sci 28, 151–156 (2013). https://doi.org/10.1007/s10103-012-1094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1094-3

Keywords

Navigation