Skip to main content

Advertisement

Log in

Classification of oral salivary gland tumors based on texture features in optical coherence tomography images

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Currently, the diagnoses of oral diseases primarily depend on the visual recognition of experienced clinicians. It has been proven that automatic recognition based on images can support clinical decision-making by extracting and analyzing objective hidden information. In recent years, optical coherence tomography (OCT) has become a powerful optical imaging technique with the advantages of high resolution and non-invasion. In our study, a dataset composed of four kinds of oral salivary gland tumors (SGTs) was obtained from a homemade swept-source OCT, including two benign and two malignant tumors. Seventy-six texture features were extracted from OCT images to create computational models of diseases. It was demonstrated that the artificial neural network (ANN) based on principal component analysis (PCA) can obtain high diagnostic sensitivity and specificity (higher than 99%) for these four kinds of tumors. The classification accuracy of each tumor is larger than 99%. In addition, the performances of two classifiers (ANN and support vector machine) were quantitatively evaluated based on SGTs. It was proven that the texture features in OCT images provided objective information to classify oral tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skalova A, Stenman G, Simpson RHW et al (2018) The role of molecular testing in the differential diagnosis of salivary gland carcinomas. Am J Surg Pathol 42(2):e11–e27. https://doi.org/10.1097/PAS.0000000000000980

    Article  PubMed  Google Scholar 

  2. Palasz P, Adamski L, Gorska-Chrzastek M, Starzynska A, Studniarek M (2017) Contemporary diagnostic imaging of oral squamous cell carcinoma - a review of literature. Pol J Radiol 7(82):193–202. https://doi.org/10.12659/PJR.900892

    Article  Google Scholar 

  3. Li Q, Zhang X, Liu X et al (2012) Long-term treatment outcome of minor salivary gland carcinoma of the hard palate. Oral Oncol 48(5):456–462. https://doi.org/10.1016/j.oraloncology.2011.12.005

    Article  PubMed  Google Scholar 

  4. Heller KS, Dubner S, Chess Q, Attie JN (1993) Value of fine needle aspiration biopsy of salivary gland mass in clinical decision making. Am J Surg 164(6):667–670. https://doi.org/10.1016/S0002-9610(05)80731-7

    Article  Google Scholar 

  5. Inohara H, Akahani S, Yamamoto Y et al (2008) The role of fine-needle aspiration cytology and magnetic resonance imaging in the management of parotid mass lesions. Acta Otolaryngol 128:1152–1158. https://doi.org/10.1080/00016480701827533

    Article  PubMed  Google Scholar 

  6. Limongelli L, Capodiferro S, Tempesta A et al (2020) Early tongue carcinomas (clinical stage I and II): echo-guided three-dimensional diode laser mini-invasive surgery with evaluation of histological prognostic parameters. A study of 85 cases with prolonged follow-up. Lasers Med Sci 35(3):751–758. https://doi.org/10.1007/s10103-019-02932-z

    Article  PubMed  Google Scholar 

  7. Kumar P, Kanaujia SK, Singh A, Pradhan A (2019) In vivo detection of oral precancer using a fluorescence-based, in-house-fabricated device: a Mahalanobis distance-based classification. Lasers Med Sci 34:1243–1251. https://doi.org/10.1007/s10103-019-02720-9

    Article  PubMed  Google Scholar 

  8. Anschau F, Webster J, Capra MEZ, de Silva ALFD, Stein AT (2019) Efficacy of low-level laser for treatment of cancer oral mucositis: a systematic review and meta-analysis. Lasers Med Sci 34:1053–1062. https://doi.org/10.1007/s10103-019-02722-7

    Article  PubMed  Google Scholar 

  9. Koch M, Schapher M, Goncalves M, Iro H, Mantsopoulos K (2020) Simultaneous application of ultrasound and sialendoscopy: experience in the management of stenosis and other non-sialolithiasis-related salivary gland disorders. Eur Rev Med Pharmaco 24(5):2196–2204. https://doi.org/10.26355/eurrev_202003_20485

    Article  CAS  Google Scholar 

  10. Razek A (2019) Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors. Magn Reson Imaging 63:55–59. https://doi.org/10.1016/j.mri.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  11. Wu W, Wang C, Li D, Luo J, Ye J, Xu S (2019) Multiphase contrast-enhanced computed tomography imaging features of salivary duct carcinoma: differentiation from other salivary gland malignancies. Oral Surg Oral Med Oral Pathol Oral Radiol 128(5):543–551. https://doi.org/10.1016/j.oooo.2019.05.011

    Article  PubMed  Google Scholar 

  12. Fakhry N, Antonini F, Michel J et al (2012) Fine-needle aspiration cytology in the management of parotid masses: evaluation of 249 patients. Eur Ann Otorhinolaryngol Head Neck Dis 129(3):131–135. https://doi.org/10.1016/j.anorl.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  13. Alnawaiseh M, Schubert F, Heiduschka P, Eter N (2019) Optical coherence tomography angiography in patients with retinitis pigmentosa. Retina 39(1):210–217. https://doi.org/10.1097/IAE.000000000000190

    Article  PubMed  Google Scholar 

  14. Turani Z, Fatemizadeh E, Blumetti T et al (2019) Optical radiomic signatures derived from optical coherence tomography images to improve identification of melanoma. Cancer Res 79(8):2021–2030. https://doi.org/10.1158/0008-5472.CAN-18-2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jerjes W, Hamdoon Z, Hopper C (2019) Structural validation of facial skin using optical coherence tomography: a descriptive study. Skin Res Technol 00:1–10. https://doi.org/10.1111/srt.12791

    Article  Google Scholar 

  16. Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang IK (2013) Optical coherence tomography - 15 years in cardiology. Circ J 77(8):1933–1940. https://doi.org/10.1253/circj.cj-13-0643.1

    Article  PubMed  Google Scholar 

  17. Gan Y, Tsay D, Amir SB, Marboe CC, Hendon CP (2016) Automated classification of optical coherence tomography images of human atrial tissue. J Biomed Opt 21(10):101407

    Article  Google Scholar 

  18. Kut C, Chaichana KL, Xi J et al (2015) Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med 7(292):292ra100. https://doi.org/10.1126/scitranslmed.3010611

    Article  PubMed  PubMed Central  Google Scholar 

  19. Erickson-Bhatt SJ, Mesa KJ, Marjanovic M, Chaney EJ, Ahmad A, Huang P-C, Liu ZG, Cunningham K, Boppart SA (2018) Intraoperative optical coherence tomography of the human thyroid: feasibility for surgical assessment. Transl Res 195:13–24. https://doi.org/10.1016/j.trsl.2017.12.001

    Article  PubMed  Google Scholar 

  20. Yang Z, Shang J, Liu C, Zhang J, Liang Y (2020) Identification of oral cancer in OCT images based on an optical attenuation model. Lasers Med Sci 35:1999–2007. https://doi.org/10.1007/s10103-020-03025-y

    Article  PubMed  Google Scholar 

  21. Hamdoon Z, Jerjes W, Upile T, McKenzie G, Jay A, Hopper C (2013) Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study. Photodiagn Photodyn 10(1):17–27. https://doi.org/10.1016/j.pdpdt.2012.07.005

    Article  Google Scholar 

  22. Walther J, Golde J, Kirsten L et al (2017) In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography. J Biomed Opt 22(12):121717. https://doi.org/10.1117/1.JBO.22.12.121717

    Article  Google Scholar 

  23. Wang J, Zheng W, Lin K, Huang Z (2018) Characterizing biochemical and morphological variations of clinically relevant anatomical locations of oral tissue in vivo with hybrid Raman spectroscopy and optical coherence tomography technique. J Biophotonics 11(3):e201700113. https://doi.org/10.1002/jbio.201700113

    Article  CAS  Google Scholar 

  24. Yang Z, Shang J, Liu C, Zhang J, Hou F, Liang Y (2020) Intraoperative imaging of oral-maxillofacial lesions using optical coherence tomography. J Innov Opt Heal Sci 13(2):2050010. https://doi.org/10.1142/s1793545820500108

    Article  Google Scholar 

  25. Li K, Yang Z, Liang W, Shang J, Liang Y, Wan S (2020) Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. J Biomed Opt 25(4):046003. https://doi.org/10.1117/1.JBO.25.4.046003

    Article  CAS  PubMed Central  Google Scholar 

  26. Koprowski R, Teper S, Wróbel Z, Wylegala E (2013) Automatic analysis of selected choroidal diseases in OCT images of the eye fundus. Biomed Eng OnLine 12(1):117. https://doi.org/10.1186/1475-925X-12-117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fu D, Tong H, Zheng S, Luo L, Gao F, Minar J (2016) Retinal status analysis method based on feature extraction and quantitative grading in OCT images. Biomed Eng Online 15:87. https://doi.org/10.1186/s12938-016-0206-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibe D, Meriaudeau F (2017) Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed Eng Online 16:68. https://doi.org/10.1186/s12938-017-0352-9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wan S, Lee HC, Huang X et al (2017) Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Med Image Anal 38:104–116. https://doi.org/10.1016/j.media.2017.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adabi S, Hosseinzadeh M, Noei S et al (2017) Universal in vivo textural model for human skin based on optical coherence tomograms. Sci Rep 7(1):17912. https://doi.org/10.1038/s41598-017-17398-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lenz M, Krug R, Dillmann C et al (2018) Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features. J Biomed Opt 23(7):071205. https://doi.org/10.1117/1.JBO.23.7.071205

    Article  Google Scholar 

  32. Hou F, Yu Y, Liang Y (2017) Automatic identification of parathyroid in optical coherence tomography images. Lasers Surg Med 49(3):305–311. https://doi.org/10.1002/lsm.22622

    Article  PubMed  Google Scholar 

  33. Bian D, Tao K, Yuan Z, Kuang H, Liu Z, Liang Y (2020) Identification of atherosclerotic plaques in intravascular optical coherence tomography images based on textures and artificial neural network. Laser Phys 30(3):035602. https://doi.org/10.1088/1555-6611/ab7239

    Article  CAS  Google Scholar 

  34. Ou X, Pan W, Xiao P (2014) In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). Int J Pharm 460:28–32. https://doi.org/10.1016/j.ijpharm.2013.10.024

    Article  CAS  PubMed  Google Scholar 

  35. Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM (2008) Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. J Biomed Opt 13(2):024003. https://doi.org/10.1117/1.2904987

    Article  PubMed  Google Scholar 

  36. Govindaraj P, Sudhakar MS (2017) Shape characterization using laws of texture energy measures facilitating retrieval. Imaging Sci J 66:98–105. https://doi.org/10.1080/13682199.2017.1380356

    Article  Google Scholar 

  37. Qi X, Sivak MV Jr, Isenberg G, Willis JE, Rollins AM (2006) Computer-aided diagnosis of dysplasia in Barrett’s esophagus using multiple endoscopic OCT images. J Biomed Opt 11(4):044010. https://doi.org/10.1117/1.2337314

    Article  PubMed  Google Scholar 

  38. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. Computer vision - ECCV pp 469–481. https://doi.org/10.1007/978-3-540-24670-1_36

  39. Keerthi Vasan K, Surendiran B (2016) Dimensionality reduction using principal component analysis for network intrusion detection. Perspectives in Science 8:510–512. https://doi.org/10.1016/j.pisc.2016.05.010

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded by the National Natural Science Foundation of China (61875092), Science and Technology Support Program of Tianjin (17YFZCSY00740), and the Beijing-Tianjin-Hebei Basic Research Cooperation Special Program (19JCZDJC65300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Liang.

Ethics declarations

Ethics approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Ethics Committee of Tianjin Stomatological Hospital.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Shang, J., Liu, C. et al. Classification of oral salivary gland tumors based on texture features in optical coherence tomography images. Lasers Med Sci 37, 1139–1146 (2022). https://doi.org/10.1007/s10103-021-03365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03365-3

Keywords

Navigation