Skip to main content
Log in

Graph realizations associated with minimizing the maximum eigenvalue of the Laplacian

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In analogy to the absolute algebraic connectivity of Fiedler, we study the problem of minimizing the maximum eigenvalue of the Laplacian of a graph by redistributing the edge weights. Via semidefinite duality this leads to a graph realization problem in which nodes should be placed as close as possible to the origin while adjacent nodes must keep a distance of at least one. We prove three main results for a slightly generalized form of this embedding problem. First, given a set of vertices partitioning the graph into several or just one part, the barycenter of each part is embedded on the same side of the affine hull of the set as the origin. Second, there is an optimal realization of dimension at most the tree-width of the graph plus one and this bound is best possible in general. Finally, bipartite graphs possess a one dimensional optimal embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belk M., Connelly R.: Realizability of graphs. Discrete Comput. Geom. 37(2), 125–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biyikoglu, T., Leydold, J., Stadler, P.F. (eds): Laplacian Eigenvectors of Graphs, volume 1915 of Lecture Notes in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  3. Chung, F.R.: Spectral graph theory. volume 92 of Regional Conference Series in Mathematics. American Mathematical Society (AMS), Providence, RI (1997)

  4. Connelly R.: Tensegrity structures: Why are they stable?. In: Thorpe, M.F., Duxbury, P.M. (eds) Rigidity Theory and Applications, pp. 47–54. Kluwer/Plenum, New York (1999)

    Google Scholar 

  5. Connelly R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cvetković D., Doob M., Sachs H.: Spectra of Graphs. Theory and Application. 3rd edn. J.A. Barth, Leipzig (1995)

    Google Scholar 

  7. Diestel R.: Graph Theory. 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  8. Feynman, R., Leighton, R., Sands, M.: Vorlesungen über Physik. Band I: Mechanik, Strahlung, Wärme. Oldenbourg Wissensch.Vlg; Auflage: 4., durchges. A (2001)

  9. Fiedler M.: Laplacian of graphs and algebraic connectivity. Comb. Graph Theory 25, 57–70 (1989)

    MathSciNet  Google Scholar 

  10. Fiedler M.: Absolute algebraic connectivity of trees. Linear Multilinear Algebra 26, 85–106 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghosh A., Boyd S., Saberi A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gineityte V., Gutman I., Lepovic M., Miroslav P.: The high-energy band in the photoelectron spectrum of alkanes and its dependence on molecular structure. J. Serbian Chem. Soc. 64(11), 673–680 (1999)

    Google Scholar 

  13. Göring F., Helmberg C., Wappler M.: Embedded in the shadow of the separator. SIAM J. Optim. 19(1), 472–501 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Göring, F., Helmberg, C., Wappler, M.: The rotational dimension of a graph. Preprint 2008–16, Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany, Oct 2008. (To appear) in J. Graph Theory

  15. Gutman I.: Hyper-Wiener index and Laplacian spectrum. J. Serbian Chem. Soc. 68(12), 949–952 (2003)

    Article  Google Scholar 

  16. Gutman I., Vidovic D., Stevanovic D.: Chemical applications of the Laplacian spectrum. VI. On the largest Laplacian eigenvalue of alkanes. J. Serbian Chem. Soc. 67(6), 407–413 (2002)

    Article  Google Scholar 

  17. Hendrickson B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5(4), 835–857 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klenke A.: Probability theory. A comprehensive course. Universitext. Springer, London (2008)

    Google Scholar 

  19. Mohar, B.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications, pp. 871–898. Wiley, New York (1991)

  20. Mohar B.: Graph Laplacians. In: Beineke, L.W., Wilson, R.J., Cameron, P.J. (eds) Topics in algebraic graph theory volume 102 of Encyclopedia of Mathematics and Its Applications, pp. 113–136. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  21. Mohar B., Poljak S.: Eigenvalues and the max-cut problem. Czech. Math. J. 40(115), 343–352 (1990)

    MathSciNet  Google Scholar 

  22. Nikiforov V.: Bounds on graph eigenvalues. I. Linear Algebra Appl. 420(2–3), 667–671 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pendavingh, R.A.: Spectral and geometrical graph characterizations. Ph.D. thesis, Universiteit van Amsterdam, Amsterdam, Oct (1998)

  24. Shi L.: Bounds on the (Laplacian) spectral radius of graphs. Linear Algebra Appl. 422(2–3), 755–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Solé P.: Expanding and forwarding. Discrete Appl. Math. 58(1), 67–78 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun J., Boyd S., Xiao L., Diaconis P.: The fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem. SIAM Rev. 48(4), 681–699 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. van der Holst H., Lovász L., Schrijver A. et al.: The Colin de Verdière graph parameter. In: Lovász, L. (eds) Graph theory and combinatorial biology volume 7 of Bolyai Soc. Math. Stud., pp. 29–85. János Bolyai Mathematical Society, Budapest (1999)

    Google Scholar 

  28. von Luxburg U., Belkin M., Bousquet O.: Consistency of spectral clustering. Ann. Stat. 36(2), 555–586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang T.-F.: Several sharp upper bounds for the largest Laplacian eigenvalue of a graph. Sci. China, Ser. A 50(12), 1755–1764 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-04), Washington, DC, vol. 2, pp. 988–995 (2004)

  31. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds): Handbook of Semidefinite Programming, volume 27 of International Series in Operations Research and Management Science. Kluwer, Boston (2000)

    Google Scholar 

  32. Zhou B., Cho H.H.: Remarks on spectral radius and Laplacian eigenvalues of a graph. Czech. Math. J. 55(3), 781–790 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Reiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göring, F., Helmberg, C. & Reiss, S. Graph realizations associated with minimizing the maximum eigenvalue of the Laplacian. Math. Program. 131, 95–111 (2012). https://doi.org/10.1007/s10107-010-0344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0344-z

Keywords

Mathematics Subject Classification (2000)

Navigation