Skip to main content
Log in

On convex envelopes for bivariate functions over polytopes

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we discuss convex envelopes for bivariate functions, satisfying suitable assumptions, over polytopes. We first propose a technique to compute the value and a supporting hyperplane of the convex envelope over a general two-dimensional polytope through the solution of a three-dimensional convex subproblem with continuously differentiable constraint functions. Then, for quadratic functions as well as for some polynomial and rational ones, again satisfying suitable assumptions, we show how the same computations can be carried out through the solution of a single semidefinite problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This can be checked in polynomial time (though cubic) with respect to the dimension of the matrix A.

References

  1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. B 124, 33–43 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. B. Available at http://www.optimization-online.org/DB_HTML/2010/08/2699.html (2011, to appear)

  4. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benson, H.P.: On the construction of convex and concave envelope formulas for bilinear and fractional functions on quadrilaterals. Comput. Optim. Appl. 27, 5–22 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bomze, I.M., Duer, M., DeKlerk, E., Roos, C., Quist, A., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  7. Brickman, L., Steinberg, L.: On nonnegative polynomials. Am. Math. Mon. 69, 218–221 (1962)

    Article  Google Scholar 

  8. Choi, M.-D., Lam, T.-Y., Reznick, B.: Sums of squares of real polynomials. Proc. Symp. Pure Math. 58, 103–126 (1995)

    MathSciNet  Google Scholar 

  9. Crama, Y.: Recognition problems for polynomials in 0–1 variables. Math. Program. 44, 139–155 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Crama, Y.: Concave extensions for nonlinear 0–1 maximization problems. Math. Program. 61, 53–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Diananda, P.H.: On non-negative forms in real variables some or all of which are non-negative. Proc. Camb. Philos. Soc. 58, 17–25 (1967)

    Article  MathSciNet  Google Scholar 

  12. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  13. Kuno, T.: A branch-and-bound algorithm for maximizing the sum of several linear ratios. J. Glob. Optim. 22, 155–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jach, M., Michaels, D., Weismantel, R.: The convex envelope of (\(n\)-1)-convex functions. SIAM J. Optim. 19(3), 1451–1466 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jibetean, D., de Klerk, E.: Global optimization of rational functions: a semidefinite programming approach. Math. Program. 106, 93–109 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. Online first version available (2011, to appear)

  17. Laraki, R., Lasserre, J.B.: Computing uniform convex approximations for convex envelopes and convex hulls. J. Convex Anal. 15, 635–654 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25(2), 157–168 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Locatelli, M., Schoen, F.: On convex envelopes and underestimators for bivariate functions. Available at http://www.optimization-online.org/DB_FILE/2009/11/2462.pdf (2009)

  21. Luedtke, J., Namazifar, M., Linderoth, J.T.: Some results on the strength of relaxations of multilinear functions. Technical report 1678. Computer Sciences Department, University of Wisconsin-Madison (2010)

  22. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs—part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meyer, C.A., Floudas, C.A.: Convex hull of trilinear monomials with mixed sign domains. J. Glob. Optim. 29, 125–155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103, 207–224 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nie, J., Demmel, J., Gu, M.: Global minimization of rational functions and the nearest GCDs. J. Glob. Optim. 40, 697–718 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rikun, A.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  28. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–424 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sherali, H.D., Alameddine, A.: An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes. Ann. Oper. Res. 27, 197–210 (1992)

    MathSciNet  Google Scholar 

  30. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Mathematica Vietnamica 22, 245–270 (1997)

    MATH  MathSciNet  Google Scholar 

  31. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 137–158 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–574. Kluwer, Dordrecht (2003)

    Google Scholar 

  34. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Schoen.

Appendix: Example 2.1

Appendix: Example 2.1

Since the computations are based on elementary (though tedious) computations, we only give a brief sketch about how to solve subproblem (9) without deriving the solutions for subproblems (10) and (11).

The general structure of the subproblems to be solved is the following

$$\begin{aligned} \begin{array}{lll} \max&c&\\&c\le \eta _j(a,b)+a x_0+ b y_0&\quad j=1,\ldots ,r \\&(a,b)\in S,&\end{array} \end{aligned}$$
(23)

where \(\eta _j,\,j=1,\ldots ,r\), are either affine or concave functions, and \(S\) is some polyhedral region defined by the derivative conditions at the extremes of the convex edges. Then, in order to solve the subproblem, we can first split its feasible region into the following \(r\) subregions

$$\begin{aligned} S_i=\{(a,b)\in S\ :\ \eta _i(a,b)\le \eta _j(a,b),\ j=1,\ldots ,r\}\ \ \ i=1,\ldots ,r; \end{aligned}$$
(24)

next, we solve the problem over each subregion \(S_i\), which amounts at solving the following problem

$$\begin{aligned} \begin{array}{lll} \max&\eta _i(a,b)+ax_0+ by_0&\\&(a,b)\in S_i.&\end{array} \end{aligned}$$

Finally, we take the maximum of all the \(r\) optimal values. The procedure will now be illustrated with subproblem (9).

First, we make the change of variable

$$\begin{aligned} z=-\left(a+\frac{1}{2}b\right), \end{aligned}$$

so that the subproblem can be rewritten as

$$\begin{aligned} \begin{array}{ll} \max&c \\&c\le -a+a x_0-2a y_0-2z y_0 \\&c\le -2a+a x_0-2a y_0-2z y_0 \\&c\le \frac{1}{2}+2\sqrt{z}+2a + 2z+a x_0-2a y_0 -2z y_0 \\&\frac{1}{4}\le z\le 1. \end{array} \end{aligned}$$
(25)

Note that with respect to the general structure (23) we have

$$\begin{aligned} S=\left\{ z\ :\ \frac{1}{4}\le z\le 1\right\} , \end{aligned}$$

and

$$\begin{aligned} \begin{array}{lll} \eta _1(a,z)&= -a \\ \eta _2(a,z)&= -2a\\ \eta _3(a,z)&= \frac{1}{2}+2\sqrt{z}+2a + 2z. \end{array} \end{aligned}$$

We will also use the following notation

$$\begin{aligned} l(a,z;x_0,y_0)=a x_0-2a y_0 -2z y_0 . \end{aligned}$$

The feasible region can now be split into the three sets \(S_i,\,i=1,\ldots ,3\), defined in (24).

Subregion \(S_1=\{\eta _2(a,z)\ge \eta _1(a,z),\ \eta _3(a,z)\ge \eta _1(a,z),\ z\in [1/4,1]\}\).

Note that

$$\begin{aligned} -a\le \frac{1}{2}+2\sqrt{z}+2a + 2z \Rightarrow a\ge -\frac{1}{3}\left(\frac{1}{2}+2\sqrt{z}+2z\right). \end{aligned}$$

The optimal value over \(S_1\) is equal to

$$\begin{aligned} \max _{(a,z)\in S_1}\ \eta _1(a,z)+l(a,z;x_0,y_0)=a\left(x_0-2y_0-1\right)-2z y_0. \end{aligned}$$

If \(x_0-2y_0-1\ge 0\) (i.e., over \(T^{\prime }_1\)), the optimal solution is \(a^*=0, z^*=\frac{1}{4}\) with optimal value \(-\frac{1}{2}y_0\). If \(x_0-2y_0-1\le 0\), then \(a^*=-\frac{1}{3}\left(\frac{1}{2}+2\sqrt{z}+2z\right)\), so that we are left with the following problem

$$\begin{aligned} \max _{z\in [1/4,1]} \left(-\frac{1}{6}-\frac{2}{3}\sqrt{z}-\frac{2}{3}z\right)(x_0-2y_0-1) - 2 z y_0. \end{aligned}$$
(26)

The optimal solution is

$$\begin{aligned} z^*= \left\{ \begin{array}{ll} \frac{1}{4}&(x_0,y_0)\in T^{\prime \prime }_1 \\ [2mm] \frac{1}{4}\left[\frac{1-x_0+2 y_0}{x_0+y_0-1}\right]^2&(x_0,y_0)\in T_2, \end{array} \right. \end{aligned}$$

with the optimal value

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{2}{3}-\frac{2}{3}x_0+\frac{5}{6} y_0&(x_0,y_0)\in T^{\prime \prime }_1 \\ [2mm] \frac{y_0(1-x_0+2 y_0)}{2(x_0+y_0-1)}&(x_0,y_0)\in T_2. \end{array} \right. \end{aligned}$$

Subregion \(S_2=\{\eta _2(a,z)\le \eta _1(a,z),\ \eta _2(a,z)\le \eta _3(a,z),\ z\in [1/4,1]\}\).

It can be easily checked that over this subregion \(\eta _2(a,z)\ge \eta _1(a,z)\) implies \(a\ge 0\). In this case the optimal value is equal to

$$\begin{aligned} \max _{(a,z)\in S_2}\ a\underbrace{(x_0-2y_0-2)}_{\le 0\ \text{ over}\ \ P }-2z y_0. \end{aligned}$$

Therefore, the optimal solution is \(a^*=0, z^*=\frac{1}{4}\), with optimal value \(-\frac{1}{2} y_0\).

Subregion \(S_3=\{\eta _3(a,z)\le \eta _1(a,z),\ \eta _3(a,z)\le \eta _2(a,z)\ z\in [1/4,1]\}\).

We have

$$\begin{aligned} a\le -\frac{1}{3}\left(\frac{1}{2}+2 \sqrt{z}+2z\right). \end{aligned}$$

and we need to solve the problem

$$\begin{aligned} \max _{(a,z)\in S_3}\ a\underbrace{(2+x_0-2y_0)}_{\ge 0\ \text{ over}\ \ P }+\frac{1}{2}+2\sqrt{z}+2z(1-y_0). \end{aligned}$$

Therefore, \(a^*=-\frac{1}{3}\left(\frac{1}{2}+2 \sqrt{z}+2z\right)\) and we are left with the problem (26), whose optimal solution has been already obtained (to be more precise, we notice that the optimal solution is \(z^{*}=\frac{1}{4}\) also over \(T^{\prime }_1\)).

By combining the different optimal values, we can conclude that the optimal value for subproblem (9) is given by (12).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, M., Schoen, F. On convex envelopes for bivariate functions over polytopes. Math. Program. 144, 65–91 (2014). https://doi.org/10.1007/s10107-012-0616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0616-x

Keywords

Mathematics Subject Classification

Navigation