Skip to main content
Log in

Modelling of cognitive activity during normal and abnormal situations using Object Petri Nets, application to a supervision system

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

This article presents a method for the modelling of cognitive activity using Object Petri Nets. The method includes the recognition of the various classes of situation (normal and abnormal) which human operators are likely to meet whilst performing their tasks. Each of these classes is described according to the characteristics of the state of the system. We will present the various mental representations used during the control/command activity according to the main aims set by the operator. The examples given come from a project dealing with the integration of a a supervision system in a railway traffic regulation room.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abed M (1990) Contribution à la modélisation de la tâche par outils de spécification exploitant les mouvements oculaires : application à la conception et l’évaluation des interfaces homme-machine. PhD Thesis, University of Valenciennes and Hainaut-Cambrésis

  • Abed M (2001) Méthodes et modèles formels et semi-formels pour la conception et l’évaluation des systèmes homme-machine. HDR Thesis, University of Valenciennes and Hainaut-Cambrésis

  • Abed M, Ezzedine H (1998) Vers une démarche intégrée de conception-évaluation des systèmes homme-machine. J Decis Syst 7:147–175

    Google Scholar 

  • Abed M, Bernard JM, Angué JC (1992) Method for comparing task model and activity model. In: Proceedings 11th European annual conference Human decision making and manual control, Valenciennes

  • Agha GA, De Cindio F, Roeznberg G (2001) Concurrent object oriented programming and Petri Nets. Advances in Petri Nets. LNCS, Springer, Berlin Heidelberg New york

    Google Scholar 

  • Bainbridge L (1981) Mathematical equations or processing routine? In: Rasmussen J, Rouse WB (eds) Human detection and diagnostics of system failures. Plenum, London, pp 259–286

    Google Scholar 

  • Bass L, Little R, Pellegrino R, Reed S, Seacord S, Sheppard S, Szesur M (1991) The arch model: Seeheim revisited. In: proceedings of user interface developpers’workshop, Seeheim

  • Benaïssa ML, Ezzedine H, Angué JC (1993) An interface specification method for industrial processes. In: XII European annual conference on human decision making and manual control. 22–24 june 1993, Kassel,Germany

  • Booch G (1993) Object oriented analysis and design with application. Benjamin/Cummings (eds), Redwood City, CA

  • Booch G, Rumbaugh J, Jacobson I (1998) The unified modeling language user guide. Addison-Wesley, Reading

    Google Scholar 

  • Boy G (1986) An expert system for fault diagnosis in orbital refueling operations. In: proceedings 24th aerospace science meeting, AIAA’86, Reno, Nevada

  • Cacciabue PC, Decortis F, Drozdowicz B, Masson M, Nordvik JP (1992) COSIMO: a cognitive simulation model of human decision making and behavior in accident management of complex plants. IEEE Transact Syst Man Cybern 22(5):1058–1074

    Article  Google Scholar 

  • Cellier JM, Eyrolle H, Mariné C (1992) Expertise in dynamic environments. In: Hoc JM, Hollnagel E (eds) Cognitive engineering in dynamic environments. Academic, Londres

    Google Scholar 

  • Coutaz J, Nigay L (2001) Architecture logicielle des systèmes interactifs. In: Kolski C (ed) Analyse et conception de l’IHM. Interaction Homme Machine pour les SI, vol 1. Éditions Hermes, Paris, pp 207–246

  • David R, Alla H (1994) Petri Nets for modeling dynamic systems, a survey. Automatica 30:175–202

    Article  MathSciNet  Google Scholar 

  • Delatte B, Heitz M, Muller JF (1993) HOOD technical group, HOOD reference manual 3.1. Masson and Prentice Hall, Englewoodcliffs

  • Diaper D, Stanton N (2003) Handbook of task analysis for human-computer interaction. Lawrence Erlbaum Associates, London

    Google Scholar 

  • Dorner D (1997) The logic of failure: recognizing and avoiding error in complex situations. HarperCollins publishers,New york

    Google Scholar 

  • Duncan KD (1981) Training for fault diagnosis in industrial process plant. In: Rasmussen J, Rouse B (eds) Human detection and diagnosis of system failures. Plenum, New York

    Google Scholar 

  • Ezzedine H, Kolski C (2004) Démarche d’évaluation d’IHM dans les systèmes complexes, application à un poste de supervision du trafic ferroviaire. Revue d’Interaction homme-machine. J Hum Comput Interact 5:91–122

    Google Scholar 

  • Ezzedine H, Benaissa M.L, Angué JC (1994) An interface design method for railway traffic processes. In: proceedings WCRR’94: world congress on railway research, Paris, pp 1233–1239

  • Fadier E (1990) Fiabilité humaine: Méthodes d’analyse et domaines d’application. In: Leplat J et De Terssac G (eds) Les Facteurs humains de la fiabilité dans les systèmes complexes, Ed. Octares

  • Fekete JD, Girard P (2001) Environnements de développement de systèmes interactifs, In Kolski C. (dir.), Environnements évolués et évaluation de l’IHM, Interaction homme-machine pour les SI 2, pp 23–52, Hermes, Paris

  • Goldberg A (1984) Smaltalk-80, the interactive programming environment. Addison-Wesley, Reading

    Google Scholar 

  • Gomes L, Barros JP, Coasta A (2001) Man-machine interface for real-time telecontrol based on Petri Nets specification. In: Bahill T, Wand FY (eds) IEEE SMC 2001 conference proceedings (e-Systems, e-Man and e-Cybernetics), Arizona, USA: IEEE Press, pp 1565–1570

  • Gray WD, John BE, Atwood ME (1992) Project Ernestine: a validation of GOMS for prediction and explanation of real-world task performance. Hum Comput Interact 8:237–259

    Article  Google Scholar 

  • Hoc JM, Amalberti R (1995) Diagnosis: some theoretical questions raised by applied research. Curr Psychol Cogn 14(1):73–101

    Google Scholar 

  • Hollnagel E (ed) (2003) Handbook of cognitive task design. Erlbaum, Mahwah

    Google Scholar 

  • Jacko JA, Sears A (2002) The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications (human factors and ergonomics). Lawrence Erlbaum Associates, London

  • Jensen K (1996) Coloured Petri Nets, basic concepts, analysis methods and practical use, 2nd edn, vol 2. Springer, Berlin Heidelberg New York

  • Johnson H, Johnson P (1991) Task knowledge structures: psychological basis and integration into system design. Acta Psychol 78:3–26

    Article  Google Scholar 

  • Jones PM, Mitchell CM (2002) Model-based cognitive engineering in complex systems. IEEE Transact Syst Man Cybern Part A Syst Hum 32(1):2–4

    Article  Google Scholar 

  • Kaddouri SA, Ezzedine H, Angué JC (1995) Task modelling using OPNs. In: Anzaï Y, Ogawa K, Mori H (eds) Symbiosis of human and artefact, HCI international’95: 6th international, Tokyo, Japan. Elsevier, Amsterdam, pp 988–994

  • Kieras D (2003) GOMS models for task analysis. In: Diaper D, Stanton N (eds) Handbook of task analysis for human-computer interaction. Lawrence Erlbaum Associates, London, pp 83–116

    Google Scholar 

  • Kolski C (1997) Interfaces homme-Machine, application aux systèmes industriels complexes. Hermes, Paris

    Google Scholar 

  • Kontogiannis T (2003) A Petri Net-based approach for ergonomic task analysis and modeling with emphasis on adaptation to system changes. Safety Sci 41(10):803–835

    Article  Google Scholar 

  • Lepreux S, Abed M, Kolski C (2003) A human-centred methodology applied to decision support system design and evaluation in a railway network context. Cogn Technol Work 5:248–271

    Article  Google Scholar 

  • Meyer B (1997) Object-oriented software construction, 2nd edn. ISE Inc., Santa Barbara, Prentice Hall Professional Technical Reference

  • Meyers B (1995) User interface software tools. ACM Trans Comput Hum Interact 2(1):64–103

    Article  Google Scholar 

  • Millot P, Debernard S (1993) Men-machines cooperative organizations : methodological and practical attemps in air traffic control. In: Proceedings IEEE conference on systems, man and cybernetics, Le Touquet, vol 1. pp 695–700, October 17–20

  • Moray N (1997) Human factors in process control. In: Salvendy G (ed) Handbook of human factors and ergonomics. Wiley, New York, pp 1944–1971

    Google Scholar 

  • Moussa F, Kolski C, Riahi M (2000) A model based approach to semi-automated user interface generation for process control interactive applications. Interact Comput 12:279–292

    Article  Google Scholar 

  • Palanque P (1992) Modélisation par objets coopératifs interactifs d’interfaces homme-machines dirigées par l’utilisateur. PhD Thesis, University of Toulouse 1

  • Palanque P, Bastide R (1997) Synergistic modelling of tasks, system and users using formal specification techniques. Interact Comput 9(12):129–153

    Article  Google Scholar 

  • Palanque P, Bastide R, Sengès V (1995) Task model–system model: towards an unifying formalism. In: proceedings of the HCI international (EHCI’95). Chapman and Hall, London, pp 189–212

  • Paternò F (2000) Model-based design and evaluation of interactive applications. Springer, Milan

    Google Scholar 

  • Penner RR (1993) Developing the process control interface. In: Larson JA, Unger C (eds) Engineering for human computer interaction. Elsevier, New York, pp 317–337

    Google Scholar 

  • Penner RR, Steinmetz ES (2002) Model-based automation of the design of user interfaces to digital control systems. IEEE Trans Syst Man Cybern Part A Syst Hum 32(1):41–49

    Article  Google Scholar 

  • Peterson JL (1981) Petri net theory and the modelling of systems. Prentice-Hall, Englewood diffs

    Google Scholar 

  • Piccini M (2002) Human factors in the design of supervisory control systems and human-machine interfaces for highly automated complex systems. Cogn Technol Work 4(4):256–271

    Article  Google Scholar 

  • Rasmussen J (1980) The human as a system component. In: Smith HT, Green TRG (eds) Human interaction with computer. Academic, London, pp 67–96

    Google Scholar 

  • Rasmussen J (1983) Skills, rules and knowledge; signals, signs and symbols, and other distinctions in human performance models. IEEE Trans Syst Man Cybern 13(3):257–266

    Google Scholar 

  • Rasmussen J (1986) Information processing and human-machine interaction, an approach to cognitive engineering. Elsevier, Amsterdam

    Google Scholar 

  • Rasmussen J (1993) Analysis of tasks, activities and work in the field and in the laboratories. Travail humain 2–3:133–155

    Google Scholar 

  • Reason J (1990) Human error. Cambridge University Press, Cambridge

    Google Scholar 

  • Riahi M (2004) Contribution à l’élaboration d’une méthodologie de spécification, de vérification et de génération semi-automatique d’interfaces homme-machine: Application à l’outil Ergo-Conceptor+. PhD Thesis, University of Valenciennes and Hainaut-Cambrésis

  • Ross DT (1977) Structured analysis (SA): a language for communicating ideas. IEEE Trans Software Eng 3(1):16–34

    Google Scholar 

  • Scapin DL, Bastien C (2001) Analyse des tâches et aide ergonomique à la conception: l’approche MAD*. In: Kolski C (ed) Analyse et Conception de l’IHM. Interaction Homme Machine pour les SI, vol 1. Éditions Hermes, Paris, pp 85–116

  • Scapin DL, Pierret-Golbreich C (1990) Towards a method for task description: MAD. In: Berlinguet L, Berthelette D (eds) Work with display units 89. Elsevier, Amsterdam, pp 371–380

    Google Scholar 

  • Shepherd A (1993) An approach to information requirements specifications for process control tasks. Ergonomics 36(11):1425–1437

    Google Scholar 

  • Shneiderman B, Plaisant C (2004) Designing the user interface: strategies for effective human-computer interaction, 4th edn. Addison-Wesley, Reading

    Google Scholar 

  • Sibertin-Blanc C (1985) High-level Petri Nets with Data Structure. In: Proceedings 6th EWPNA. Espoo, Finland

  • Smith D (2001) Reliability, maintainability and risk, 6th edn. Newnes,UK

    Google Scholar 

  • Spolsky J (2001) User interface design for programmers. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stammers RB, Carey MS, Astley JA (1990) Task analysis. In: Wilson JR, Corlett EN (eds) Evaluation of human work. A practical ergonomics methodology. Taylor & Francis, London, pp 134–160

    Google Scholar 

  • Stanton N (1994) Human factors in alarm design. Taylor & Francis, London

    Google Scholar 

  • Tabary D (2001) Contributionà TOOD, une méthode à base de modèles pour la spécification et la conception des systèmes interactifs. PhD Thesis, University of Valenciennes and Hainaut-Cambrésis

  • Tabary D, Abed M (2002) A software environment task object oriented design (ETOOD). J Syst Software 60:129–141

    Article  Google Scholar 

  • Tarby JC, Barthet MF (1996) The DIANE+ Method. In: Proceedings of the 2nd international conference on computer-aided design of user interfaces CADUI’96, pp 95–119, Namur, Belgium

  • Van Harmelen M (2001) Object modeling and user interface design. Addison-Wesley, Reading

    Google Scholar 

  • Vanderdonckt J (1999) Development milestones towards a tool for working with guidelines. Interact Comput 12:81–118

    Article  Google Scholar 

  • Vanderdonckt J, Farenc C (2000) Tools for working with guidelines TFWWG’2000. Springer, London

    Google Scholar 

  • Villemeur A (1992) Reliability, availability, maintainability and safety assessment, vols 1 and 2. Wiley, Chichester

  • Wilson JR, Corlett EN (1996) Evaluation of human works: a practical ergonomics methodology, 2nd edn. Taylor & Francis, London

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SNCF, and also the FEDER, the GRRT and the Nord-Pas-de Calais regional authorities which have provided support for this research (SART and NIPO projects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kolski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezzedine, H., Kolski, C. Modelling of cognitive activity during normal and abnormal situations using Object Petri Nets, application to a supervision system. Cogn Tech Work 7, 167–181 (2005). https://doi.org/10.1007/s10111-005-0184-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-005-0184-4

Keywords

Navigation