Skip to main content

Advertisement

Log in

Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Ann Rev Environ Resour 29:261–299

    Article  Google Scholar 

  • Bailey AW, Irving BD, Fitzgerald RD (1990) Regeneration of woody species following burning and grazing in aspen parkland. J Range Manage 43:212–215

    Article  Google Scholar 

  • Bartolomé J, Franch J, Plaixats J, Seligman NG (1998) Diet selection by sheep and goats on Mediterranean heath-woodland range. J Range Manage 51:383–391

    Article  Google Scholar 

  • Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1998) Spatial and temporal changes in rainfall frequency distribution patterns in Israel. Theor Appl Climatol 61:177–190

    Article  Google Scholar 

  • Carmel Y, Kadmon R (1999) Effects of grazing and topography on long-term vegetation changes in Mediterranean ecosystem in Israel. Plant Ecol 145:243

    Article  Google Scholar 

  • Christensen L, Coughenour MB, Ellis JE, Chen ZZ (2004) Vulnerability of the Asian typical steppe to grazing and climate change. Clim Change 63:351–368

    Article  CAS  Google Scholar 

  • Danin A (1992) Flora and vegetation of Israel and adjacent areas. Bocconea 3:18–42

    Google Scholar 

  • Degen AA, Benjamin RW, Abdraimov SA, Sarbasov TI (2002) Browse selection by Karakul sheep in relation to plant composition and estimated metabolizable energy content. J Agric Sci 139:353–358

    Article  Google Scholar 

  • Drewa PB, Havstad KM (2001) Effects of fire, grazing, and the presence of shrubs on Chihuahuan desert grasslands. J Arid Environ 48:429–443

    Article  Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field C (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:e319

    Article  CAS  Google Scholar 

  • Easterling DR, Karl TR, Gallo KP, Robinson DA, Trenberth KE, Dai A (2000) Observed climate variability and change of relevance to the biosphere. J Geophys Res Atmos 105:20101–20114

    Article  Google Scholar 

  • Étienne M (2005) Management of grazing animals for environmental quality. In: Molina Alcaide E, Ben Salem H, Biala K, Morand-Fehr P (eds) Sustainable grazing, nutritional utilization and quality of sheep and goat products (Pâturage durable, utilization nutritionnelle et qualité des produits des ovins et des caprins, Options Méditerranéennes - Série A. Séminaires Méditerranéens 67). CIHEAM-IAMZ, Zaragoza, pp 225–235

  • FAO (2003) Compendium of agricultural–environmental indicators. 1989–91 to 2000. Food and Agriculture Organization of the United Nations, Statistical Analysis Service, Statistics Division, Rome

  • Fernandez-Gimenez ME, Le Febre S (2006) Mobility in pastoral systems: dynamic flux or downward trend? Int J Sust Dev World Ecol 13:341–362

    Google Scholar 

  • Fuhlendorf SD, Briske DD, Smeins FE (2001) Herbaceous vegetation change in variable rangeland environments: the relative contribution of grazing and climatic variability. Appl Veg Sci 4:177–188

    Google Scholar 

  • Giorgi F, Bi X, Pal J (2004a) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: Climate change scenarios (2071–2100). Clim Dyn 23:839–858

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004b) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Clim Dyn 22:733–756

    Article  Google Scholar 

  • Greene RSB, Kinnell PIA, Wood JT (1994) Role of plant cover and stock trampling on runoff and soil erosion from semi-arid wooded rangelands. Aust J Soil Res 32:953–973

    Article  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947

    Article  CAS  Google Scholar 

  • Heisler JL, Briggs JM, Knapp AK, Blair JM, Seerey A (2004) Direct and indirect effects of fire on shrub density and aboveground productivity in a mesic grassland. Ecology 85:2245–2257

    Article  Google Scholar 

  • Henkin Z, Seligman NG, Noy-Meir I, Kafkafi U, Gutman M (1998) Rehabilitation of Mediterranean dwarf-shrub rangeland with herbicides, fertilizers, and fire. J Range Manage 51:193–199

    Article  Google Scholar 

  • Hibbard KA, Schimel DS, Archer S, Ojima DS, Parton W (2003) Grassland to woodland transitions: integrating changes in landscape structure and biogeochemistry. Ecol Appl 13:911–926

    Article  Google Scholar 

  • Holzapfel C, Tielbörger K, Parag HA, Kigel J, Sternberg M (2006) Annual plant–shrub interactions along an aridity gradient. Basic Appl Ecol 7:268–279

    Article  Google Scholar 

  • ICARDA, IFPRI (2008) The Mashreq/Maghreb project. Background. http://www.icarda.org/mmproject/Background.htm. Accessed 20 Feb 2008

  • IPCC (Intergovernmental Panel on Climate Change) (2000) Emission scenarios. Summary for policymakers. A special report of the IPCC Working Group III, IPCC, Geneva, Switzerland

  • Jeltsch F, Moloney K, Schurr F, Köchy M, Schwager M (2008) The state of plant population modelling in light of environmental change. Perspect Plant Ecol Evol Syst 9:171–189

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1997) Analysing shrub encroachment in the southern Kalahari: a grid-based modelling approach. J Appl Ecol 34:1497–1508

    Article  Google Scholar 

  • Jones RG, Murphy JM, Hassell D, Taylor R (2001) Ensemble mean changes in a simulation of the European mean climate of 2071–2100 using the new Hadley Centre regional modeling system HadAM3H/HadRM3H. Hadley Centre Report, Hadley Centre, Exeter, UK

  • Kadmon R (1995) Plant competition along soil moisture gradients: a field experiment with the desert annual Stipa capensis. J Ecol 83:253–262

    Article  Google Scholar 

  • Kaplan Y (1984) The ecosystem of the Yahudia Nature Reserve with emphasis on dynamics of germination and development of Quercus ithaburensis Decne. Dissertation, University of Wageningen, Wageningen, The Netherlands

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  CAS  Google Scholar 

  • Koch J, Schaldach R (2006) Adapting a land use change model to the Jordan River region. In: Ünal Y, Kahya C, Demirhan Barı D (eds) Proceedings of the international conference on climate change and the middle east: past, present and future, Istanbul. Turkish State Meteorological Service (DMI), Ankara (Turkey), pp 358–364

  • Köchy M (2006) Opposite trends in life stages of annual plants caused by daily rainfall variability—interaction with climate change. In: Ünal Y, Kahya C, Demirhan Barı D (eds) Proceedings of the international conference on climate change and the middle east: past, present and future, Istanbul. Turkish State Meteorological Service (DMI), Ankara, pp 347–357

  • Köchy M (2007) Grazing capacity of Middle East landscapes under contrasting climate change scenarios. 37. Jahrestagung der Gesellschaft für Ökologie. 10–14 August 2007, Marburg (Germany). Verh Ges Ökol 37:137

    Google Scholar 

  • Köchy M, Wilson SD (2005) Variation in nitrogen deposition and available soil nitrogen in a forest–grassland ecotone in Canada. Landsc Ecol 20:191–202

    Article  Google Scholar 

  • Koechy M (2008) Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region. BMC Ecol 8:4. doi:10.1186/1472-6785-8-4

  • Kutiel P (1992) Slope aspect effect on soil and vegetation in a Mediterranean ecosystem. Isr J Bot 41:243–250

    Google Scholar 

  • Lavorel S, Canadell J, Rambal S, Terrades J (1998) Mediterranean terrestrial ecosystems: research priorities on global change effects. Glob Ecol Biogeogr Lett 7:157–166

    Google Scholar 

  • Le Houérou HN (1982) The impact of climate on pastoralism. In: Kates RW, Ausubel RN, Berberian M (eds) The impact of climate on pastoralism. Wiley, New York, pp 155–185

    Google Scholar 

  • Leclerc B, Joffre R, Joffre L-M (1986) Utilisation du maquis corse par des caprins et des ovins. III.—Exploitation de l’espace alimentaire par des caprins. Acta Œcol-Œcol Appl 7:123–149

    Google Scholar 

  • Leij FJ, Romano N, Palladino M, Schaap MG, Coppola A (2004) Topographical attributes to predict soil hydraulic properties along a hillslope transect. Water Resour Res 40:W02407

    Article  Google Scholar 

  • Madany MH, West NE (1983) Livestock grazing-fire regime interactions within montane forests of Zion National Park, Utah. Ecology 64:661–667

    Article  Google Scholar 

  • Malkinson D, Jeltsch F (2007) Intraspecific facilitation: a missing process along increasing stress gradients—insights from simulated shrub populations. Ecography 30:339–348

    Google Scholar 

  • Mathaj M (2007) Modellierung von Vegetation und Erosion entlang eines Klimagradienten von mediterran bis semiarid, Diplomarbeit (MSc thesis), Universität Potsdam, Potsdam

  • Mellado M, Valdez R, Lara LM, Lopez R (2003) Stocking rate effects on goats: a research observation. J Range Manage 56:167–173

    Article  Google Scholar 

  • Milchunas DG (2006) Responses of plant communities to grazing in the southwestern United States. General Technical Report RMPRS-GTR 169, United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA

  • Milchunas DG, Forwood JR, Lauenroth WK (1994) Forage production across fifty years of grazing intensity treatments in shortgrass steppe. J Range Manage 47:133–139

    Article  Google Scholar 

  • Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Change Biol 8:423–437

    Article  Google Scholar 

  • Ngaido T, Shomo F, Arab G (2001) Institutional change in the Syrian rangelands. Inst Dev Stud Bull 32:64

    Google Scholar 

  • Oesterheld M, DiBella CM, Kerdiles H (1998) Relation between NOAA-AVHRR satellite data and stocking rate of rangelands. Ecol Appl 8:207–212

    Article  Google Scholar 

  • Osem Y, Perevolotsky A, Kigel J (2002) Grazing effect on diversity of annual plant communities in a semi-arid rangeland; interactions with small-scale spatial and temporal variation in primary productivity. J Ecol 90:936–946

    Article  Google Scholar 

  • Osman AE, Cocks PS, Russi L, Pagnotta MA (1991) Response of Mediterranean grassland to phosphate and stocking rates—biomass production and botanical composition. J Agric Sci 116:37–46

    Article  Google Scholar 

  • Papachristou T (1994) Foraging behaviour and nutrition of goats grazing on shrublands of Greece. In: Gordon IJ, Rubino R (eds) Grazing behaviour of goats and sheep (Comportement au pâturage des chèvres et des brebis, Cahiers Option Méditerranéennes 5). CIHEAM-IAMZ, Zaragoza, pp 83–90

  • Pardini A, Longhi F, Orlandini S, Dalla Marta A (2003) Integration of pastoral communities in the global economy. Regional studies association international conference: reinventing regions in a global economy, 12–15 April 2003, Pisa. http://www.regional-studies-assoc.ac.uk/events/pisa03/pardinietal.pdf. Accessed 5 Dec 2005

  • Parker AJ, Branner JC (1982) The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Phys Geogr 3:160–168

    Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO, Scopegram Group members (1995) Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol 1:13–22

    Article  Google Scholar 

  • Perevolotsky A, Landau S, Kababia D, Ungar ED (1998) Diet selection in dairy goats grazing woody Mediterranean rangeland. Appl Anim Behav Sci 57:117–131

    Article  Google Scholar 

  • Perevolotsky A, Ne'eman G, Yonatan R, Henkin Z (2001) Resilience of prickly burnet to management in east Mediterranean rangelands. J Range Manage 54:561–566

    Article  Google Scholar 

  • Perry CA, Hsu KJ (2000) Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc Natl Acad Sci USA 97:12433–12438

    Article  CAS  Google Scholar 

  • Pickup (1996) Estimating the effects of land degradation and rainfall variation on productivity in rangelands: an approach using remote sensing and models of grazing and herbage dynamics. J Appl Ecol 33:819–832

    Article  Google Scholar 

  • Plieninger T (2007) Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. J Nat Conserv 15:1–9

    Article  Google Scholar 

  • Puigdefábregas J (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Process Landf 30:133–147

    Article  Google Scholar 

  • Reisman-Berman O, Kadmon R, Shachak M (2006) Spatio-temporal scales of dispersal limitation in the recolonization of a semi-arid Mediterranean old-field. Ecography 29:418–426

    Article  Google Scholar 

  • Richardson FD, Hahn BD, Hoffman MT (2007) Modelling the sustainability and productivity of pastoral systems in the communal areas of Namaqualand. J Arid Environ 70:701–717

    Article  Google Scholar 

  • Rowe AG (1999) The exploitation of an arid landscape by a pastoral society: the contemporary eastern Badia of Jordan. Appl Geogr 19:345–361

    Article  Google Scholar 

  • Saupe D (1988) Algorithms for random fractals. In: Peitgen H, Saupe D (eds) The science of fractal images. Springer, New York, pp 71–136

    Google Scholar 

  • Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89:464–480

    Article  Google Scholar 

  • Snyder KA, Tartowski SL (2006) Multi-scale temporal variation in water availability: implications for vegetation dynamics in arid and semi-arid ecosystems. J Arid Environ 65:219–234

    Article  Google Scholar 

  • Sternberg M, Gutman M, Perevolotsky A, Ungar ED, Kigel J (2000) Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J Appl Ecol 37:224–237

    Article  Google Scholar 

  • Sternberg M, Shoshany M (2001a) Aboveground biomass allocation and water content relationships in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecol 157:171–179

    Article  Google Scholar 

  • Sternberg M, Shoshany M (2001b) Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol Res 16:335–345

    Article  Google Scholar 

  • Tadmor NH, Eyal E, Benjamin RW (1974) Plant and sheep production on semiarid annual grassland in Israel. J Range Manage 27:427–432

    Article  Google Scholar 

  • Tietjen B, Jeltsch F (2007) Semi-arid grazing systems and climate change—a survey of present modelling potential and future needs. J Appl Ecol 44:425–434

    Article  Google Scholar 

  • van de Koppel J, Rietkerk M (2000) Herbivore regulation and irreversible vegetation change in semi-arid grazing systems. Oikos 90:253–260

    Article  Google Scholar 

  • van de Koppel J, Rietkerk M, van Langevelde F, Kumar L, Klausmeier CA, Fryxell JM, Hearne J (2002) Spatial heterogeneity and irreversible vegetation change in semi-arid grazing systems. Am Nat 159:209–218

    Article  Google Scholar 

  • Warren SD, Thurow TL, Blackburn WH, Garza NE (1986) The influence of livestock trampling under intensive rotation grazing on soil hydrologic characteristics. J Range Manage 39:491–495

    Article  Google Scholar 

  • Williams CA, Albertson JD (2006) Dynamical effects of the statistical structure of annual rainfall on dryland vegetation. Glob Change Biol 12:777–792

    Article  Google Scholar 

  • Zarovali MP, Yiakoulaki MD, Papanastasis VP (2007) Effects of shrub encroachment on herbage production and nutritive value in semi-arid Mediterranean grasslands. Grass Forage Sci 62:355–363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Malin Hansen, the members of the Potsdam University working group “Plant Ecology and Nature Conservation”, and three anonymous reviewers for critical comments on the manuscript. This study is part of the GLOWA Jordan River project financed by the German Federal Ministry for Education and Research (BMBF), contract 01LW0306(A). The authors alone are responsible for the content of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Köchy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köchy, M., Mathaj, M., Jeltsch, F. et al. Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes. Reg Environ Change 8, 73–87 (2008). https://doi.org/10.1007/s10113-008-0048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-008-0048-6

Keywords

Navigation