Skip to main content
Log in

A high-resolution climatological study on the comparison between surface explosive and ordinary cyclones in the Mediterranean

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The dynamic and kinematic characteristics of surface explosive cyclones in the Mediterranean are examined and compared to those of ordinary cyclones. The cyclone detection is performed with the tracking algorithm developed in the University of Melbourne, using the 1° × 1° ERA-40 mean sea level pressure dataset for a 40 year period. It is verified that the explosive cyclogenesis in the Mediterranean is mainly a maritime phenomenon, occurring along the northern Mediterranean coast during the cold season. On the contrary, the ordinary cyclogenesis exhibits significant maxima in both continental and maritime environments throughout the year. The explosive cyclones are characterized by longer lifetime and greater propagation speed. They are larger and deeper in the eastern Mediterranean, whereas the ordinary cyclones are deeper in the western and larger in the eastern Mediterranean. The trend analysis revealed that both explosive and ordinary cyclones become less frequent in the Mediterranean basin, while there is a tendency for deeper ordinary cyclones over North Africa and shallower over the Aegean Sea and Cyprus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen JT, Pezza AB, Black MT (2010) Explosive cyclogenesis: a global climatology comparing multiple reanalyses. J Clim 23:6468–6484. doi:10.1175/2010JCLI3437.1

    Article  Google Scholar 

  • Alpert P, Neeman BU, Shay-El Y (1990) Intermonthly variability of cyclone tracks in the Mediterranean. J Clim 3:1474–1478. doi:10.1175/1520-0442(1990)003<1474:IVOCTI>2.0.CO;2

    Article  Google Scholar 

  • Alpert P, Stein U, Tsidulko M (1995) Role of sea fluxes and topography in eastern mediterranean cyclogenesis. Global Atmos Ocean Syst 3:55–79

    Google Scholar 

  • Bartholy J, Pongrácz R, Pattantyús-Ábrahám M (2009) Analyzing the genesis, intensity, and tracks of western Mediterranean cyclones. Theor Appl Climatol 96:133–144. doi:10.1007/s00704-008-0082-9

    Article  Google Scholar 

  • Bergeron T (1954) The problem of tropical hurricanes. Q J R Meteorol Soc 80:131–164

    Article  Google Scholar 

  • Bosart LF (1981) The President’s Day Snowstorm of 18–19 February 1979. A subsynoptic event. Mon Weather Rev 109:1542–1566

    Article  Google Scholar 

  • Böttger H, Eckardt M, Katergiannakis U (1975) Forecasting extratropical storms with hurricane intensity using satellite information. J Appl Meteorol 14:1259–1265

    Article  Google Scholar 

  • Campins J, Genovés A, Picornell MA, Jansà A (2010) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614. doi:10.1002/joc.2183

    Google Scholar 

  • Capaldo M, Conte M, Finizio C, Todisco G (1980) A detailed analysis of a severe storm in the central Mediterranean: the case of Trapani flood. Riv Meteorol Aeronaut XL 213:183–199

    Google Scholar 

  • Conte M (1986) The meteorological “bomb” in the Mediterranean: a synoptic climatology. Riv Meteorol Aeronaut 46:121–130

    Google Scholar 

  • Conte M, Piervitali E, Colacino M (1997) The meteorological bomb in the Mediterranean. INM/WMO International symposium on cyclones and hazardous weather in the Mediterranean, MMA/UIB, pp 283–287

    Google Scholar 

  • Courtier P et al (1998) The ECMWF implementation of three dimensional variational assimilation 3D-Var. Part I: formulation. Q J R Meteorol Soc 124:1783–1808. doi:10.1002/qj.49712455002

    Google Scholar 

  • Fink AH, Pohle S, Pinto JG, Knippertz P (2012) Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys Res Lett 39 L07803. doi: 10.1029/2012GL051025

  • Fita L, Romero R, Luque A, Emanuel K, Ramis C (2007) Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat Hazards Earth Syst Sci 7:41–56

    Article  Google Scholar 

  • Flocas A (1988) Frontal depressions over the Mediterranean Sea and central Southern Europe. Mediterr 4:43–52

    Article  Google Scholar 

  • Flocas HA, Simmonds I, Kouroutzoglou J, Kevin K, Hatzaki M, Bricolas V, Asimakopoulos D (2010) On cyclonic tracks over the eastern Mediterranean. J Clim 23:5243–5257. doi:10.1175/2010Jcli3426.1

    Article  Google Scholar 

  • Flocas HA, Kountouris P, Kouroutzoglou J, Hatzaki M, Keay K, Simmonds I (2012) Vertical characteristics of cyclonic tracks over the eastern Mediterranean during the cold period of the year. Theor Appl Climatol (online). doi:10.1007/s00704-012-0737-4

    Google Scholar 

  • Gil VE, Genovés A, Picornell MA, Jansà A (2003) Automated database of cyclones from the ECMWF model: preliminary comparison between west and east Mediterranean basins, Proc 4th EGS plinius conference. Mallorca, Spain

    Google Scholar 

  • Gyakum JR (1983a) On the evolution of the QE II storm. I: synoptic aspects. Mon Weather Rev 111:1137–1155

    Article  Google Scholar 

  • Gyakum JR (1983b) On the evolution of the QE II storm. II: dynamic and thermodynamic structure. Mon Weather Rev 111:1156–1173

    Article  Google Scholar 

  • Gyakum JR, Danielson RE (2000) Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western north Pacific. Mon Weather Rev 128:851–863. doi:10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2

    Article  Google Scholar 

  • Hedley M, Yau MK (1991) Anelastic modeling of explosive cyclogenesis. J Atmos Sci 48:711–727

    Article  Google Scholar 

  • H.M.S.O. (1962) Weather in the Mediterranean, Vol. 1, 2nd ed. Meteorological Office:London; 362

  • Homar V, Jansà A, Campins J, Genovés A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazard Earth Syst Sci 7:445–454. doi:10.5194/nhess-7-445-2007

    Article  Google Scholar 

  • Jansà A, Alpert P, Buzzi A, Arbogast P (2001) MEDEX, cyclones that produce high impact weather in the Mediterranean, available at http://medex.inm.uib.es

  • Karacostas TS, Flocas AA (1983) The development of the “bomb” over the Mediterranean area. La Meteorologie, Actes de la conference “eau verte” 34:351–358

  • Keable M, Simmonds I, Keay K (2002) Distribution and temporal variability of 500 hPa cyclone characteristics in the Southern Hemisphere. Int J Climatol 22:131–150. doi:10.1002/joc.728

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Simmonds I, Keay K, Hatzaki M (2011a) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol 31:1785–1802. doi:10.1002/joc.2203

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Simmonds I, Keay K, Hatzaki M (2011b) Assessing characteristics of Mediterranean explosive cyclones for different data resolution. Theor Appl Climatol 105:263–275. doi:10.1007/s00704-010-0390-8

    Article  Google Scholar 

  • Kuo YH, Reed RJ, Low-Nam S (1991) Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon Weather Rev 119:457–476. doi:10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2

    Article  Google Scholar 

  • Lagouvardos K, Kotroni V, Defer E (2007) The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis. Q J R Meteorol Soc 133:1519–1531. doi:10.1002/qj.121

    Article  Google Scholar 

  • Leonard SR, Turner J, van Der Wal A (1999) An assessment of three automatic depression tracking schemes. Meteorol Appl 6:173–183. doi:10.1017/S135048279900119X

    Article  Google Scholar 

  • Lim EP, Simmonds I (2002) Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon Weather Rev 130:2188–2209. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Lim EP, Simmonds I (2007) Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J Clim 20:2675–2690. doi:10.1175/JCLI4135.1

    Article  Google Scholar 

  • Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak SO, Jansà A, Maheras P, Sanna A, Trigo IF, Trigo R (2006) Cyclones in the Mediterranean region: climatology and effects on the environment. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam

    Google Scholar 

  • Lolis CJ, Bartzokas A, Katsoulis BD (2004) Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter. Int J Climatol 24:1803–1816. doi:10.1002/joc.1112

    Article  Google Scholar 

  • Maheras P, Flocas HA, Patrikas I, Anagnostopoulou C (2001) A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130. doi:10.1002/joc.599

    Article  Google Scholar 

  • Murray RJ, Simmonds I (1991a) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Meteorol Mag 39:155–166

    Google Scholar 

  • Murray RJ, Simmonds I (1991b) A numerical scheme for tracking cyclone centres from digital data. part II: application to January and July general circulation model simulations. Aust Meteorol Mag 39:167–180

    Google Scholar 

  • Neu et al. (2012) IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties. Bull Am Meteorol Soc (e-View) doi:10.1175/BAMS-D-11-00154.1

  • Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazard Earth Syst Sci 10:1379–1391. doi:10.5194/nhess-10-1379-2010

    Article  Google Scholar 

  • Palmén E, Netwon CW (1969) Atmospheric circulation systems: their structure and physical interpretation. Academic Press, New York

    Google Scholar 

  • Petterssen S (1956) Weather analysis and forecasting. Volume I: Motion and motion systems. McGraw Hill, New York

  • Picornell MA, Jansà A, Genovés A, Campins J (2001) Automated database of mesocyclones from the HIRLAM(INM)-0.5° analyses in the western Mediterranean. Int J Climatol 21:335–354. doi:10.1002/joc.621

    Article  Google Scholar 

  • Piervitali E, Colacino M, Conte M (1997) Signals of climatic change in the central-western Mediterranean basin. Theor Appl Climatol 58:211–219. doi:10.1007/BF00865021

    Article  Google Scholar 

  • Pinto JG, Spangehl T, Ulbrich U, Speth P (2005) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Z 14:823–838. doi:10.1127/0941-2948/2005/0068

    Article  Google Scholar 

  • Prezerakos NG, Michaelides SC (1989) A composite diagnosis in sigma coordinates of the atmospheric energy balance during intense cyclonic activity. Q J R Meteorol Soc 115:463–486. doi:10.1002/qj.49711548703

    Article  Google Scholar 

  • Radinovic D (1965) Cyclonic activity in yugoslavia and surrounding areas. Meteorol Atmos Phys 14:391–408

    Google Scholar 

  • Radinovic D (1987) Mediterranean cyclones and their influence on the weather and climate. WMO, PSMP Report Series, 24, pp. 131

  • Raible CC, Della-Marta PM, Schwierz C, Wernli H, Blender R (2008) Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses. Mon Weather Rev 136:880–897. doi:10.1175/2007MWR2143.1

    Article  Google Scholar 

  • Roebber PJ (1984) Statistical analysis and updated climatology of explosive cyclones. Mon Weather Rev 112:1577–1589

    Article  Google Scholar 

  • Roebber PJ (1989) On the statistical analysis of cyclone deepening rates. Mon Weather Rev 117:2293–2298

    Article  Google Scholar 

  • Rudeva IA, Gulev SK (2007) Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon Weather Rev 135:2568–2587. doi:10.1175/MWR3420.1

    Article  Google Scholar 

  • Sanders F (1986) Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. part I: composite structure and mean behavior. Mon Weather Rev 114:1781–1794

    Article  Google Scholar 

  • Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “Bomb”. Mon Weather Rev 108:1589–1606. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Shay-El Y, Alpert P (1991) A diagnostic study of winter diabatic heating in the Mediterranean in relation to cyclones. Q J R Meteorol Soc 117:715–747. doi:10.1002/qj.49711750004

    Article  Google Scholar 

  • Simmonds I (2000) Size changes over the life of sea level cyclones in the NCEP reanalysis. Mon Weather Rev 128:4118–4125. doi:10.1175/1520-0493(2000)129<4118:SCOTLO>2.0.CO;2

    Article  Google Scholar 

  • Simmonds I, Keay K (2000) Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. J Clim 13:873–885. doi:10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2

    Article  Google Scholar 

  • Simmonds I, Murray RJ (1999) Southern extratropical cyclone behavior in ECMWF analyses during the FROST special observing periods. Weather Forecast 14:878–891. doi:10.1175/1520-0434

    Article  Google Scholar 

  • Simmonds I, Murray RJ, Leighton RM (1999) A refinement of cyclone tracking methods with data from FROST. Aust Meteorol Mag, Special Edition, pp 35–49

    Google Scholar 

  • Solomon S, Qin D, Manning M et al (2007) Climate change 2007: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143. doi:10.1007/s00382-005-0065-9

    Article  Google Scholar 

  • Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696. doi:10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2

    Article  Google Scholar 

  • Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130:549–569. doi:10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 Re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Yau MK, Jean M (1989) Synoptic aspects and physical processes in the rapidly intensifying cyclone of 6–8 March 1986. Atmos-Ocean 27:59–86. doi:10.1080/07055900.1989.9649328

    Article  Google Scholar 

  • Zolina O, Gulev SK (2002) Improving the accuracy of mapping cyclone numbers and frequencies. Mon Weather Rev 130:748–759. doi:10.1175/1520-0493(2002)130<0748:ITAOMC>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Flocas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouroutzoglou, J., Flocas, H.A., Hatzaki, M. et al. A high-resolution climatological study on the comparison between surface explosive and ordinary cyclones in the Mediterranean. Reg Environ Change 14, 1833–1846 (2014). https://doi.org/10.1007/s10113-013-0461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0461-3

Keywords

Navigation