Skip to main content
Log in

A time-interval sequence classification method

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Classification is one of the most popular behavior prediction tools in behavior informatics (behavior computing) to predict group membership for data instances. It has been greatly used to support customer relationship management (CRM) such as customer identification, one-to-one marketing, fraud detection, and lifetime value analysis. Although previous studies showed themselves efficient and accurate in certain CRM classification applications, most of them took demographic, RFM-type, or activity attributes as classification criteria and seldom took temporal relationship among these attributes into account. To bridge this gap, this study takes customer temporal behavior data, called time-interval sequences, as classification criteria and develops a two-stage classification framework. In the first stage, time-interval sequential patterns are discovered from customer temporal databases. Then, a time-interval sequence classifier optimized by the particle swam optimization (PSO) algorithm is developed to achieve high classification accuracy in the second stage. The experiment results indicate the proposed time-interval sequence classification framework is efficient and accurate to predict the class label of new customer temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn H, Kim KJ, Han I (2006) Hybrid genetic algorithms and case-based reasoning systems for customer classification. Expert Syst 23(3): 127–144

    Article  Google Scholar 

  2. Arumugam MS, Rao MVC, Chandramohan A (2008) A new and improved version of particle swarm optimization algorithm with global–local best parameters. Knowl Inf Syst 16(3): 331–357

    Article  Google Scholar 

  3. Baesens B, Verstraeten G, Vanden Poel D, Egmont-Petersen M, Van Kenhove P, Vanthienen J (2004) Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers. Eur J Oper Res 156(2): 508–523

    Article  MATH  Google Scholar 

  4. Baesens B, Viaene S, Van Den Poel D, Vanthienen J, Dedene G (2002) Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur J Oper Res 138(1): 191–211

    Article  MATH  Google Scholar 

  5. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1): 235–242

    Article  Google Scholar 

  6. Bruyn AD, Liechty JC, Huizingh EKRE, Lilien GL (2008) Offering online recommendations with minimum customer input through conjoint-based decision aids. Mark Sci 27(3): 1–38

    Article  Google Scholar 

  7. Bouchaffra D, Tan J (2006) Structural hidden Markov models using a relation of equivalence: application to automotive designs. Data Min Knowl Discov 12(1): 79–96

    Article  MathSciNet  Google Scholar 

  8. Cao L (2008) Behavior informatics and analytics: let behavior talk. In: Proceedings of IEEE international conference on data mining workshops, pp 87–96

  9. Cao L (2010) In-depth behavior understanding and use: the behavior informatics approach. Inf Sci 180(17): 3067–3085

    Article  Google Scholar 

  10. Cao L, Yu PS (2009) Behavior informatics: an informatics perspective for behavior studies. IEEE Intell Inform Bull 10(1): 6–11

    Google Scholar 

  11. Chen H, Chung W, Xu J, Wang G, Qin Y, Chau M (2004) Crime data mining: a general framework and some examples. Computer 37(4): 50–56

    Article  Google Scholar 

  12. Chen YL, Chiang MC, Ko MT (2003) Discovering time-interval sequential patterns in sequence databases. Expert Syst Appl 25(3): 343–354

    Article  Google Scholar 

  13. Cheung KW, Kwok JT, Law MH, Tsui KC (2003) Mining customer product ratings for personalized marketing. Decis Support Syst 35(2): 231–243

    Article  Google Scholar 

  14. Chiu C (2002) A case-based customer classification approach for direct marketing. Expert Syst Appl 22(2): 163–168

    Article  Google Scholar 

  15. Chu BH, Tsai MS, Ho CS (2007) Toward a hybrid data mining model for customer retention. Knowl Based Syst 20(8): 703–718

    Article  Google Scholar 

  16. Cui D, Curry D (2005) Prediction in marketing using the support vector machine. Mark Sci 24(4): 595–615

    Article  Google Scholar 

  17. Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the IEEE conference on evolutionary computation, ICEC 1, pp 81–86

  18. Evangelakis GA, Rizos JP, Lagaris IE, Demetropoulos IN (1987) Merlin—a portable system for multidimensional minimization. Comput Phys Commun 46(3): 401–415

    Article  Google Scholar 

  19. Exarchos TP, Tsipouras MG, Papaloukas C, Fotiadis DI (2008) A two-stage methodology for sequence classification based on sequential pattern mining and optimization. Data Knowl Eng 66(3): 467–487

    Article  Google Scholar 

  20. Exarchos TP, Tsipouras MG, Papaloukas C, Fotiadis DI (2009) An optimized sequential pattern matching methodology for sequence classification. Knowl Inf Syst 19(2): 249–264

    Article  Google Scholar 

  21. Fletcher R (1987) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  22. Ha SH, Bae SM, Park SC (2002) Customer’s time-variant purchase behavior and corresponding marketing strategies: an online retailer’s case. Comput Ind Eng 43(4): 801–820

    Article  Google Scholar 

  23. Huang CL, Dun JF (2008) A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8(4): 1381–1391

    Article  Google Scholar 

  24. Jiang T, Tuzhilin A (2006) Segmenting customers from population to individuals: does 1-to-1 keep your customers forever. IEEE Trans Knowl Data Eng 18(10): 1297–1311

    Article  Google Scholar 

  25. Joung JG, June OS, Zhang BT (2006) Protein sequence-based risk classification for human papillomaviruses. Comput Biol Med 36(6): 656–667

    Article  Google Scholar 

  26. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  27. Kim J, Suh E, Hwang H (2003) A model for evaluating the effectiveness of crm using the balanced scorecard. J Interact Mark 17(2): 5–19

    Article  Google Scholar 

  28. Kim SY, Jung TS, Suh EH, Hwang HS (2006) Customer segmentation and strategy development based on customer lifetime value: a case study. Expert Syst Appl 31(1): 101–107

    Article  Google Scholar 

  29. Kim Y, Street WN (2004) An intelligent system for customer targeting: a data mining approach. Decis Support Syst 37(2): 215–228

    Article  Google Scholar 

  30. Kim YH, Moon BR (2006) Multicampaign assignment problem. IEEE Trans Knowl Data Eng 18(3): 405–414

    Article  Google Scholar 

  31. Köknar-Tezel S, Latecki LJ (2011) Improving SVM classification on imbalanced time series data sets with ghost points. Knowl Inf Syst 28(1): 1–23

    Article  Google Scholar 

  32. Lee TS, Chiu CC, Chou YC, Lu CJ (2006) Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput Stat Data Anal 50(4): 1113–1130

    Article  MathSciNet  Google Scholar 

  33. Legrand B, Chang CS, Ong SH, Neo SY, Palanisamy N (2008) Chromosome classification using dynamic time warping. Pattern Recog Lett 29(3): 215–222

    Article  Google Scholar 

  34. Lendasse A, Verleysen M, De Bodt E, Cottrell M, Grgoire P (1998) Forecasting time-series by Kohonen classification. In: Proceedings of European symposium on artificial neural networks, pp 221–226

  35. Lesh N, Zaki MJ, Ogihara M (1999) Mining features for sequence classification. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, pp 342–346

  36. Lesh N, Zaki MJ, Ogihara M (2000) Scalable feature mining for sequential data. IEEE Intell Syst Appl 15(2): 48–56

    Article  Google Scholar 

  37. Lessmann S, Voß S (2008) Supervised classification for decision support in customer relationship management. In: Bortfeldt A, Homberger J, Kopfer H, Pankratz G, Strangmeier R (eds) Intelligent decision support. Gabler, Wiesbaden, pp 231–253

    Chapter  Google Scholar 

  38. Li C, Khan L, Prabhakaran B (2006) Real-time classification of variable length multi-attribute motions. Knowl Inf Syst 10(2): 163–183

    Article  Google Scholar 

  39. Lin SW, Chen SC, Wu WJ, Chen CH (2009) Parameter determination and feature selection for back-propagation network by particle swarm optimization. Knowl Inf Syst 21(2): 249–266

    Article  Google Scholar 

  40. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4): 536–540

    Google Scholar 

  41. Nanopoulos A, Alcock R, Manolopoulos Y (2001) Feature-based classification of time-series data. In: Nikos M, Stavros DN (eds) Information processing and technology. Nova Science Publishers, New York, pp 49–61

    Google Scholar 

  42. Ngai EWT, Xiu L, Chau DCK (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36(2 PART 2): 2592–2602

    Article  Google Scholar 

  43. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu MC (2001) PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of international conference on data engineering, pp 215–224

  44. Peng T, Zuo W, He F (2008) SVM based adaptive learning method for text classification from positive and unlabeled documents. Knowl Inf Syst 16(3): 281–301

    Article  Google Scholar 

  45. Prinzie A, Van Den Poel D (2005) Constrained optimization of data-mining problems to improve model performance: a direct-marketing application. Expert Syst Appl 29(3): 630–640

    Article  Google Scholar 

  46. Shi Y, Eberhart R (1998) Modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation, Anchorage, AK, USA, pp 69–73

  47. Teo TSH, Devadoss P, Pan SL (2006) Towards a holistic perspective of customer relationship management (CRM) implementation: a case study of the housing and development board, Singapore. Decis Support Syst 42(3): 1613–1627

    Article  Google Scholar 

  48. Tsai CY, Lo CC, Lin CW (2011) A time-interval sequential pattern change detection method. Int J Inf Tech Deci Marking 10(1): 83–108

    Article  Google Scholar 

  49. Tsai CY, Shieh YC (2009) A change detection method for sequential patterns. Decis Support Syst 46(2): 501–511

    Article  Google Scholar 

  50. Tsai CY, Chiu CC (2004) A purchase-based market segmentation methodology. Expert Syst Appl 27(2): 265–276

    Article  Google Scholar 

  51. Tseng VS, Lee CH (2005) CBS: a new classification method by using sequential patterns. In: Proceedings of the SIAM international data mining conference, California, USA

  52. Tseng VS, Lee CH (2009) Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Syst Appl 36(5): 9524–9532

    Article  Google Scholar 

  53. Viaene S, Baesens B, Van Gestel T, Suykens JAK, Van Den Poel D, Vanthienen J, Moor B, Dedene G (2001) Knowledge discovery in a direct marketing case using least squares support vector machines. Int J Intell Syst 16(9): 1023–1036

    Article  MATH  Google Scholar 

  54. Vigna G, Valeur F, Kemmerer R (2003) Designing and implementing a family of intrusion detection systems. SIGSOFT Softw Eng Notes 28(5): 88–97

    Article  Google Scholar 

  55. Wang FY, Carley KM, Zeng D, Mao WJ (2007) Social computing: from social informatics to social intelligence. IEEE Intell Syst 22(2): 79–83

    Article  Google Scholar 

  56. Wang T, Yang J (2010) A heuristic method for learning Bayesian networks using discrete particle swarm optimization. Knowl Inf Syst 24(2): 269–281

    Article  Google Scholar 

  57. Xing D, Girolami M (2007) Employing latent dirichlet allocation for fraud detection in telecommunications. Pattern Recog Lett 28(13): 1727–1734

    Article  Google Scholar 

  58. Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on machine learning (ICML’06), New York, USA

  59. Xing Z, Pei J, Yu PS (2012) Early classification on time series. Knowl Inf Syst 31(1): 105–127

    Article  Google Scholar 

  60. Yang Y, Cao L, Liu L (2010) Time-sensitive feature mining for temporal sequence classification. Lect Notes Comput Sci 6230: 315–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieh-Yuan Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CY., Chen, CJ. & Chien, CJ. A time-interval sequence classification method. Knowl Inf Syst 37, 251–278 (2013). https://doi.org/10.1007/s10115-012-0501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-012-0501-1

Keywords

Navigation