Skip to main content
Log in

Neighborhood system S-approximation spaces and applications

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In this paper, we will study neighborhood system S-approximation spaces, i.e., combination of S-approximation spaces with identical elements except that they have different knowledge mappings, e.g., the knowledge mappings differ due to different experimental conditions and/or sampling methodology. In such situations, there is a risk of contradictory knowledge sets which can lead to different decisions by the same query. These situations are studied in this paper in detail. Moreover, neighborhood system S-approximation spaces are investigated from a three-way decisions viewpoint with respect to different deciders. In addition, completeness results are shown for optimistic and pessimistic neighborhood system S-approximation spaces, i.e., these constructions can be represented by an ordinary S-approximation space. Also, the concept of knowledge significance is proposed and studied in detail, and we have shown that computing a minimal set of knowledge mappings for a neighborhood system S-approximation space is \({\mathbf {NP}}\)-hard. Finally, the paper is concluded by two illustrative medical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Donia H (2012) Multi knowledge based rough approximations and applications. Knowl-Based Syst 26:20–29

    Article  Google Scholar 

  2. Chen H, Li T, Qiao S, Ruan D (2010) A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values. Int J Intell Syst 25(10):1005–1026

    Article  MATH  Google Scholar 

  3. Chen H, Li T, Ruan D, Lin J, Hu C (2013) A rough-set-based incremental approach for updating approximations under dynamic maintenance environments. IEEE Trans Knowl Data Eng 25(2):274–284

    Article  Google Scholar 

  4. Chen H, Li T, Luo C, Horng SJ, Wang G (2014) A rough set-based method for updating decision rules on attribute values’ coarsening and refining. IEEE Trans Knowl Data Eng 26(12):2886–2899

    Article  Google Scholar 

  5. Chen H, Li T, Zhang J, Luo C, Li X (2014) Probabilistic composite rough set and attribute reduction. In: Knowledge engineering and management. Springer, Berlin, pp 189–197

  6. Davvaz B (2008) A short note on algebraic \(T\)-rough sets. Inf Sci 178(16):3247–3252 (Including special issue: recent advances in granular computing fifth international conference on machine learning and cybernetics)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dempster A (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38(2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, New York

    MATH  Google Scholar 

  9. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. VLDB 99:518–529

    Google Scholar 

  10. Hooshmandasl MR, Shakiba A, Goharshady AK, Karimi A (2014) S-approximation: a new approach to algebraic approximation. J Discrete Math 2014:1–5

    Article  MATH  Google Scholar 

  11. Huang B, Guo C-X, Zhuang Y-L, Li H-X, Zhou X-Z (2014) Intuitionistic fuzzy multigranulation rough sets. Inf Sci 277:299–320

    Article  MathSciNet  Google Scholar 

  12. Khan MA, Banerjee M (2008) Formal reasoning with rough sets in multiple-source approximation systems. Int J Approx Reason 49(2):466–477 (Special Section on Probabilistic Rough Sets and Special Section on PGM06)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leskovec J, Rajaraman A, Ullman J (2014) Mining of massive datasets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Levandowsky M, Winter D (1971) Distance between sets. Nature 234(5323):34–35

    Article  Google Scholar 

  15. Lin T (1988) Neighborhood systems and approximation in relational databases and knowledge bases. In: Proceedings of the 4th international symposium on methodologies of intelligent systems

  16. Lin TY (1998) Granular computing on binary relations I: data mining and neighborhood systems. Rough Sets Knowl Discov 1:107–121

    MATH  Google Scholar 

  17. Lin T (2001) Granulation and nearest neighborhoods: rough set approach. In: Pedrycz W (ed) Granular computing, studies in fuzziness and soft computing, vol 70. Physica-Verlag, Heidelberg, pp 125–142

    Google Scholar 

  18. Lin G, Qian Y, Li J (2012) NMGRS: Neighborhood-based multigranulation rough sets. Int J Approx Reason 53(7):1080–1093 (Selected papers uncertain reasoning at FLAIRS 2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin G, Liang J, Qian Y (2013) Multigranulation rough sets: from partition to covering. Inf Sci 241:101–118

    Article  MathSciNet  MATH  Google Scholar 

  20. Pagliani P (2004) Pretopologies and dynamic spaces. Fundam Inf 59(2):221–239

    MathSciNet  MATH  Google Scholar 

  21. Pattaraintakorn P, Cercone N (2008) Integrating rough set theory and medical applications. Appl Math Lett 21(4):400–403

    Article  MathSciNet  MATH  Google Scholar 

  22. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  23. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Theory and decision library. system theory, knowledge engineering, and problem solving. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  24. Pawlak Z (1998) Rough set theory and its applications to data analysis. Cybern Syst 29(7):661–688

    Article  MATH  Google Scholar 

  25. Pei Z, Xu Z (2004) Rough set models on two universes. Int J Gen Syst 33(5):569–581

    Article  MathSciNet  MATH  Google Scholar 

  26. Polkowski L, Skowron A (1994) Rough mereology. In: Ra ZW, Zemankova M (eds) Methodologies for intelligent systems. Springer, Berlin, pp 85–94

    Chapter  Google Scholar 

  27. Qian Y, Liang J, Dang C (2010) Incomplete multigranulation rough set. IEEE Trans Syst Man Cybern Part A Syst Hum 40(2):420–431

    Article  Google Scholar 

  28. Qian Y, Liang J, Wei W (2010) Pessimistic rough decision. In: The 2nd international workshop on rough sets theory, pp 440–449

  29. Qian Y, Liang J, Yao Y, Dang C (2010) MGRS: A multi-granulation rough set. Inf Sci 180(6):949–970 (Special issue on modelling uncertainty)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qian Y, Li S, Liang J, Shi Z, Wang F (2014) Pessimistic rough set based decisions: a multigranulation fusion strategy. Inf Sci 264:196–210

    Article  MathSciNet  MATH  Google Scholar 

  31. Qian Y, Zhang H, Sang Y, Liang J (2014) Multigranulation decision-theoretic rough sets. Int J Approx Reason 55(1, Part 2):225–237 (Special issue on decision-theoretic rough sets)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shafer G (1976) A mathematical theory of evidence, vol 1. Princeton University Press, Princeton

    MATH  Google Scholar 

  33. Shakiba A, Hooshmandasl M (2015) S-approximation spaces: a three-way decision approach. Fundam Inf 139(3):307–328

    Article  MathSciNet  MATH  Google Scholar 

  34. She Y, He X (2012) On the structure of the multigranulation rough set model. Knowl-Based Syst 36:81–92

    Article  Google Scholar 

  35. Sierpinski W, Krieger CC (1956) General topology, vol 7. Courier Corporation, USA

    Google Scholar 

  36. Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. In: Slowinski R (ed) Intelligent decision support, theory and decision library, vol 11. Springer, The Netherlands, pp 331–362

    Chapter  Google Scholar 

  37. Statnikov A, Henaff M, Lytkin N, Aliferis C (2012) New methods for separating causes from effects in genomics data. BMC Genom 13(Suppl 8):S22

    Article  Google Scholar 

  38. Sun B, Ma W (2014) Multigranulation rough set theory over two universes. J Intell Fuzzy Syst 28(3):1251–1269

    MathSciNet  Google Scholar 

  39. Xu W, Wang Q, Zhang X (2011) Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. Int J Fuzzy Syst 13(4):246–259

    MathSciNet  Google Scholar 

  40. Xu W, Wang Q, Luo S (2012) Optimistic multi-granulation fuzzy rough sets on tolerance relations. In: 2012 international symposium on information science and engineering (ISISE). IEEE, pp 299–302

  41. Xu W, Wang Q, Zhang X (2013) Multi-granulation rough sets based on tolerance relations. Soft Comput 17(7):1241–1252

  42. Yao Y (1996) Two views of the theory of rough sets in finite universes. Int J Approx Reason 15(4):291–317

    Article  MathSciNet  MATH  Google Scholar 

  43. Yao Y (1998) Generalized rough set models. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 1: methodology and approximations, studies in fuzziness and soft computing, vol 1. Physica-Verlag, Heidelberg, pp 286–318

    Google Scholar 

  44. Yao Y (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 111(1):239–259

    Article  MathSciNet  MATH  Google Scholar 

  45. Yao Y (2012) An outline of a theory of three-way decisions. In: Yao J, Yang Y, Slowinski R, Greco S, Li H, Mitra S, Polkowski L (eds) Rough sets and current trends in computing. Springer, Berlin, pp 1–17

    Chapter  Google Scholar 

  46. Yao Y, Deng X (2014) Quantitative rough sets based on subsethood measures. Inf Sci 267:306–322

    Article  MathSciNet  MATH  Google Scholar 

  47. Zadeh L (1965) Fuzzy sets. Inf control 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  48. Zadeh L (1983) The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets Syst 11(1):197–198

    MathSciNet  MATH  Google Scholar 

  49. Zadeh L (1986) A simple view of the Dempster–Shafer theory of evidence and its implication for the rule of combination. AI Mag 7(2):85

    Google Scholar 

  50. Zhang J, Li T, Chen H (2012) Composite rough sets. In: Lei J, Wang F, Deng H, Miao D (eds) Artificial intelligence and computational intelligence, vol 7530, Lecture notes in computer science. Springer, Berlin, pp 150–159

  51. Zhang J, Li T, Ruan D, Gao Z, Zhao C (2012) A parallel method for computing rough set approximations. Inf Sci 194:209–223

    Article  Google Scholar 

  52. Zhang J, Li T, Chen H (2014) Composite rough sets for dynamic data mining. Inf Sci 257:81–100

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang J, Wong JS, Li T, Pan Y (2014) A comparison of parallel large-scale knowledge acquisition using rough set theory on different mapreduce runtime systems. Int J Approx Reason 55(3):896–907

    Article  Google Scholar 

  54. Zhang J, Wong JS, Pan Y, Li T (2015) A parallel matrix-based method for computing approximations in incomplete information systems. IEEE Trans Knowl Data Eng 27(2):326–339

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge and are in debt of the helpful comments and suggestions of the reviewers, which have improved the presentation and the technicality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hooshmandasl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakiba, A., Hooshmandasl, M.R. Neighborhood system S-approximation spaces and applications. Knowl Inf Syst 49, 749–794 (2016). https://doi.org/10.1007/s10115-015-0913-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-015-0913-9

Keywords

Navigation