Skip to main content

Advertisement

Log in

Properties of phosphoric acid doped Poly(benzimidazole/sulfone/siloxane/amide)/Sulfonated Polystyrene/Silica nanoparticle-based proton exchange membranes for fuel cells

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

New siloxane and sulfone containing poly(benzimidazole/sulfone/siloxane/amide) (PBSSA) has been prepared for the formation of hybrid membranes (PBSSA/PS-S/SiNPs) with sulfonated polystyrene (PS-S) and 0.1 wt%-2 wt% silica nanoparticles (SiNPs). Field emission scanning electron micrographs showed good dispersion of filler, formation of dense nanoporous honeycomb like structure and uniform ionic pathway in these hybrids. The porous membrane structure was responsible for the fine water retention capability and higher proton conductivity of the new hybrids. Increasing the amount of nanoparticles from 0.1 wt% to 2 wt% increased the tensile stress of acid doped PBSSA/PS-S/SiNPs nanocomposites from 65.7 MPa to 68.5 MPa. A relationship between nanofiller loading and thermal stability of the membranes was also experientially studied, as the glass transition temperature of phosphoric acid doped PBSSA/PS-S/SiNPs nanocomposites increased from 207 °C to 215 °C. The membranes also had higher ion exchange capacity (IEC) around 2.01 mmol/g to 3.01 mmol/g. The novel membranes with high IEC value achieved high proton conductivity of 1.10–2.34 S/cm in a wide range of humidity values at 80 °C which was higher than that of perfluorinated Nafion®117 membrane (1.1 × 10−1 S/cm) at 80 °C (94% RH). A H2/O2 fuel cell using the PBSSA/PS-S/SiNP 2 (IEC 3.01 mmol/g) showed better performance than that of Nafion® 117 at 40 °C and 30% RH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lufrano, F.G.S., Patti, A. and Passalacqua, E., J. Appl. Polym. Sci., 2000, 77: 1250

    Article  CAS  Google Scholar 

  2. Gautier-Luneau, I.A.D., Sanchez, J.Y. and Poinsignon, C., Electrochem. Acta, 1992, 37: 1615

    Article  CAS  Google Scholar 

  3. Bae, J.M.I.H., Murata, M., Yamamoto, T., Rikukawa, M. and Ogata, N., Solid State Ionics, 2002, 147: 189

    Article  CAS  Google Scholar 

  4. Glipa, X.B.B., Mula, B., Jones, D.J. and Rozière, J., J. Mater. Chem., 1999, 9: 3045

    Article  CAS  Google Scholar 

  5. Inzelt, G., Pineri, M., Schultze, J.W. and Vorotyntsev, M.A., Electrochim. Acta, 2000, 45: 2403

    Article  CAS  Google Scholar 

  6. Jorissen, L., Gogel, V., Kerres, J., Garche, J., J. Power Sources, 2002, 105: 2672

    Article  Google Scholar 

  7. Jung, D.H., Cho, S.Y., Peck, D.H., Shin, D.R. and Kim, J.S., J. Power Sources, 2003, 118: 205

    Article  CAS  Google Scholar 

  8. Watari, T.J.F., Tanaka, K., Kita, H., Okamoto, K.I. and Hirano, T., J. Membr. Sci., 2004, 230: 111

    Article  CAS  Google Scholar 

  9. Wang, F.M.H., Ji, Q., Harrison, W., Mecham, J., Zawodzinski, T.A. and McGrath, J.E., Macromol. Symp., 2001, 175: 387

    Article  CAS  Google Scholar 

  10. Lufrano, F.I.G., Staiti, P., Antonucci, V. and Passalacqua, E., Solid State Ionics, 2001, 145: 47

    Article  CAS  Google Scholar 

  11. Einsla, B.R.W.L.H., Tchatchoua, C. and McGrath, J.E., Polym. Prepr., 2004, 44: 645

    Google Scholar 

  12. Jin, X.M.T.B., Ellis, T.S. and Karasz, F.E., Brit. Polym. J., 1985, 17: 4

    Article  CAS  Google Scholar 

  13. Gil, M.X.J., Li, X., Na, H., Hampsey, J E. and Lu, Y., J. Membr. Sci., 2004, 234: 75

    Article  CAS  Google Scholar 

  14. Wainright, J.S., Wang, J.T., Weng, D., Savinell, R.F. and Litt, M.J., Electrochem. Soc., 1995, 142: L121

    Article  CAS  Google Scholar 

  15. Leykin, A.Y., Askadskii, A.A., Vasilev, V.G. and Rusanov, A.L., J. Membr. Sci., 2010, 347: 69

    Article  CAS  Google Scholar 

  16. Asensio, J.A., Borros, S. and Gomez-Romero, P., J. Polym. Sci. Part A: Polym. Chem., 2002, 40: 3703

    Article  CAS  Google Scholar 

  17. Lobato, J., Canizares, P., Rodrigo, M. A., Linares, J. J. and Manjavacas, G., J. Membr. Sci., 2006, 280: 351

    Article  CAS  Google Scholar 

  18. Kim, H.J., An, S.J., Kim, J.Y., Moon, J.K., Cho, S.Y., Eun, Y.C., Yoon, H.K., Park, Y., Kweon, H.J. and Shin, E.M., Macromol. Rapid Commun., 2004, 25: 1410

    Article  CAS  Google Scholar 

  19. Vogel, H.C.S.M., J. Polym. Sci., 1961, 50: 511

    Article  CAS  Google Scholar 

  20. Glipa, X.B.B., Mula, B., Jones, D.J. and Rozière, J., J. Mater. Chem., 1999, 9: 3045

    Article  CAS  Google Scholar 

  21. Li, Q.R.H., Jensen, J.O. and Bjerrum, N.J., Fuel Cells, 2004, 4: 147

    Article  CAS  Google Scholar 

  22. Ma, Y.L.J.S.W., Litt, M.H. and Savinell, R.F., J. Electrochem. Soc., 2004, 151: A8.

    Article  CAS  Google Scholar 

  23. Lu, H.T., Colloid J., 2013, 75: 311

    Article  CAS  Google Scholar 

  24. Handgea, U.A., Hedicke-Höchstötter, K. and Altstädt, V., Polymer, 2010, 51: 2690

    Article  Google Scholar 

  25. Nakabayashi, K., Higashihara, T. and Ueda M., J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 2757

    Article  CAS  Google Scholar 

  26. Miyatake, K., Chikashige, Y. and Watanabe, M., Macromolecules, 2003, 36: 9691

    Article  CAS  Google Scholar 

  27. Liu, B., Robertson, G.P., Guiver, M.D., Hu, W. and Jiang, Z., Macromolecules, 2007, 40: 1934

    Article  CAS  Google Scholar 

  28. Bae, B., Miyatake, K. and Watanabe, M., Macromolecules, 2010, 43: 2684

    Article  CAS  Google Scholar 

  29. Pang, J., Zhang, H., Jiang, Z. and Li. X., Macromolecules, 2007, 40: 9435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, A., Siddiq, M. Properties of phosphoric acid doped Poly(benzimidazole/sulfone/siloxane/amide)/Sulfonated Polystyrene/Silica nanoparticle-based proton exchange membranes for fuel cells. Chin J Polym Sci 32, 1319–1328 (2014). https://doi.org/10.1007/s10118-014-1513-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-014-1513-y

Keywords

Navigation