Skip to main content
Log in

Structure evolution mechanism of poly(acrylonitrile/itaconic acid/acrylamide) during thermal oxidative stabilization process

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN) polymers with different compositions were prepared by an efficient aqueous free-radical polymerization technique. Thermal properties of polyacrylonitrile homopolymer (PAN), poly(acrylonitrile/itaconic acid) [P(AN/IA)] and poly(acrylonitrile/itaconic acid/acrylamide) [P(AN/IA/AM)] were studied by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetry in detail. It was found that AM had the ability to initiate and accelerate thermal oxidative stabilization process, which was confirmed by the lower initiation temperature and broader exothermic peak in P(AN/IA/AM) as compared with that in P(AN/IA) and PAN. The intensity of heat releasing during the thermal treatment was relaxed due to the presence of two separated exothermic peaks. Accompanied by DSC analysis and calculation of the apparent activation energy of cyclization reaction, two peaks were assigned to the ionic and free radical induction mechanisms, respectively. The higher rate constant in P(AN/IA/AM) indicated that the ionic mechanism actually had a kinetic advantage at promoting thermal stability over the free radical mechanism. This study clearly show that the synthesized P(AN/IA/AM) terpolymers possess larger room to adjust manufacture parameters to fabricate high performance of PAN-based carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yusof, N. and Ismail, A.F., J. Anal. Appl. Pyrol., 2012, 93: 1

    Article  CAS  Google Scholar 

  2. Rahaman, M.S.A., Ismail, A.F. and Mustafa, A., Polym. Degrad. Stab., 2007, 92: 1421

    Article  CAS  Google Scholar 

  3. Dong, Z.X., Feng, T., Zheng, C., Li, G.M., Liu, F.F. and Qiu, X.P., Chinese J. Polym. Sci., 2016, 34(11): 1386

    Article  CAS  Google Scholar 

  4. Frank, E., Hermanutz, F. and Buchmeiser, M.R., Macromol. Mater. Eng., 2012, 297: 493

    Article  CAS  Google Scholar 

  5. Gupta, A.K., Paliwal, D.K. and Bajaj. P., J. Appl. Polym. Sci., 1996, 59: 1819

    Article  CAS  Google Scholar 

  6. Lei, D.Y., Devarayan, K., Li, X.D., Choi, W.K., Seo, M.K. and Kim, B.S., Carbon Lett., 2014, 15(4): 290

    Article  Google Scholar 

  7. Cheraghi, R., Bahrami, S.H., Arami, M. and Enayati, M., J. Polym. Res., 2016, 23: 207

    Article  Google Scholar 

  8. Bajaj, P., Sreekumar, T.V. and Sen, K., J. Appl. Polym. Sci., 2001, 79: 1640

    Article  CAS  Google Scholar 

  9. Li, P. and Shan, H.G, J. Appl. Polym. Sci., 1995, 56: 877

    Article  CAS  Google Scholar 

  10. Xue, Y., Liu, J. and Liang, J.Y., Polym. Degrad. Stab., 2013, 98: 219

    Article  CAS  Google Scholar 

  11. Nguyen-Thai, N.U. and Hong, S.C., Carbon, 2014, 69: 571

    Article  CAS  Google Scholar 

  12. Liu, J., Lian, F., Ma, Z.K. and Liang, J.Y., Chinese J. Polym. Sci., 2012, 30(6): 786

    Article  CAS  Google Scholar 

  13. Bahrami, S.H., Bajaj, P. and Sen, K., J. Appl. Polym. Sci., 2003, 88: 685

    Article  CAS  Google Scholar 

  14. Grassie, N. and McGuchan, P., J. Appl. Polym. Sci., 1971, 7: 1357

    CAS  Google Scholar 

  15. Grassie, N. and McGuchan, R., Eur. Polym. J., 1972, 8: 257

    Article  CAS  Google Scholar 

  16. Wu, G.P., Lu, C.X., Ling, L.C. and Lu, Y.G., Polym. Bull., 2009, 62: 667

    Article  CAS  Google Scholar 

  17. Bajaj, P., Sreekumar, T.V. and Sen, K., Polymer, 2001, 42: 1707

    Article  CAS  Google Scholar 

  18. Devasia, R., Reghunadhan Nair, C.P. and Ninan, K.N., Eur. Polym. J., 2002, 38: 2003

    Article  CAS  Google Scholar 

  19. Devasia, R., Reghunadhan Nair, C.P. and Ninan, K.N., Eur. Polym. J., 2003, 39: 537

    Article  CAS  Google Scholar 

  20. Cheraghi, R., Bahrami, S.H., Arami, M. and Enayati, M., J. Polym. Res., 2016, 23: 207

    Article  Google Scholar 

  21. Tsai, J.S. and Lin, C.H., J. Mater. Sci. Lett., 1990, 9: 869

    Article  CAS  Google Scholar 

  22. Zhang, W.X., Liu, J. and Wang, C.G., Carbon, 2003, 41: 2805

    Article  CAS  Google Scholar 

  23. Wu, X.P., Zhang, X.L., Lu, C.X. and Ling, L.C., Chinese J. Polym. Sci., 2010, 28(3): 367

    Article  CAS  Google Scholar 

  24. Gressie, N. and McGuchan, R., Eur. Polym. J., 1997, 6(9): 1277

    Article  Google Scholar 

  25. Watt, W. and Johnson, W., Nature, 1975, 257: 210

    Article  CAS  Google Scholar 

  26. Sivy, G.T. and Coleman, M.M., Carbon, 1981, 19: 137

    Article  CAS  Google Scholar 

  27. Fu, Z.Y., Gui, Y., Cao, C.L., Liu, B.J., Zhou, C. and Zhang, H.X., J. Mater. Sci., 2014, 49: 2864

    Article  CAS  Google Scholar 

  28. Bajaj, P., Sen, K. and Bahrami, S.H., J. Appl. Polym. Sci., 1996, 59: 1539

    Article  CAS  Google Scholar 

  29. Ju, A.Q., Guang, S.Y. and Xu, H.Y., Carbon, 2013, 54: 323

    Article  CAS  Google Scholar 

  30. Ouyang, Q., Cheng, L., Wang, H.J. and Li, K.X., Polym. Degrad. Stab., 2008, 93: 1415

    Article  CAS  Google Scholar 

  31. Collins, G.L., Thomas, N.W. and Williams, G.E., Carbon, 1988, 26: 671

    Article  CAS  Google Scholar 

  32. Yu, M.J., Bai, Y.J., Wang, C.G., Xu, Y. and Guo, P.Z., Mater. Lett., 2007, 61: 2292

    Article  CAS  Google Scholar 

  33. Bang, Y.H., Lee, S. and Cho, H.H., J. Appl. Polym. Sci., 1998, 68: 2205

    Article  CAS  Google Scholar 

  34. Ouyang, Q., Wang, H.J., Cheng, L. and Sun, Y.H., J. Polym. Res., 2007, 14: 497

    Article  CAS  Google Scholar 

  35. Gupta, A.K., Paliwal, D.K. and Bajaj, P., J. Appl. Polym. Sci., 1995, 58: 1161

    Article  CAS  Google Scholar 

  36. Arbab, S. and Zeinolebadi, A., Polym. Degrad. Stab., 2013, 98: 2537

    Article  CAS  Google Scholar 

  37. Xiao, S.J., Wang, B., Zhao, C., Xu, L.H. and Chen, B.H., J. Appl. Polym. Sci., 2013, 127(3): 2332

    Article  CAS  Google Scholar 

  38. Sen, K., Bajaj, P. and Sreekumar, T.V., J. Polym. Sci. Part B: Polym. Phys., 2003, 41: 2949

    Article  CAS  Google Scholar 

  39. Fitzer, E. and Muller, D.J., Carbon, 1975, 13(1): 63

    Article  CAS  Google Scholar 

  40. Ouyang, Q., Cheng, L., Wang, H.J. and Li, K.X., J. Therm. Anal. Calorim., 2008, 94(1): 85

    Article  CAS  Google Scholar 

  41. Ozawa, T.B., Chem. Soc. Jpn., 1965, 38: 1881

    Article  CAS  Google Scholar 

  42. Kissinger, H.E., Anal. Chem., 1957, 29: 1702

    Article  CAS  Google Scholar 

  43. Collins, G.L., Thomas, N.W. and Williams, G.E., Fiber. Sci. Technol., 1984, 20: 37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Xiao  (肖茹).

Additional information

This work was financially supported by the National 973 Project (Nos. 2011CB605602 and 2011CB605603) and the Program of Introducing Talents of Discipline to Universities (No. 111-2-04).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Zp., Shao, Zc., Xiao, R. et al. Structure evolution mechanism of poly(acrylonitrile/itaconic acid/acrylamide) during thermal oxidative stabilization process. Chin J Polym Sci 35, 1020–1034 (2017). https://doi.org/10.1007/s10118-017-1945-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-1945-2

Keywords

Navigation