Skip to main content
Log in

Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Superhydrophobic poly(vinylidene fluoride) (PVDF) membrane incorporated with nanoparticles was applied in membrane distillation to recover water from phenolic rich solution containing surfactant. The membranes coated on woven support were fabricated using phase inversion with dual bath coagulation and post-modified using silane. The membranes incorporated with TiO2, SiO2, or a mixture of TiO2-SiO2 nanoparticles achieved the water contact angle higher than 160°. The addition of TiO2-SiO2 mixture into PVDF matrix further enhanced the hierarchical roughness of membrane. Hence, PVDF/TiO2-SiO2 membrane achieved the highest permeation flux and rejected 99.9% of gallic acid in the feed (100 g/L). PVDF/TiO2-SiO2 membrane also maintained a relative flux (J/J0) higher than 0.9 after 8 h of operation. Even with the presence of surfactant in phenolic rich solution, PVDF/TiO2-SiO2 membrane was able to exhibit relative flux above 0.8. The significant changes on the hydrophobicity and chemical properties of PVDF/TiO2-SiO2 membrane due to fouling were not observed after 50 h of static adsorption test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 153, 153–177.

    Article  CAS  Google Scholar 

  2. The Cocacola company, Improving Our Water Efficiency. http://www.coca-colacompany.com/stories/setting-a-new-goal-for-water-efficiency, 2017[Accessed 10 December 2017].

  3. Rahim, R.; Raman, A. Cleaner production implementation in a fruit juice production plant. J. Clean Prod. 2015, 101, 215–221.

    Article  CAS  Google Scholar 

  4. Suarez, L.; Dez, M. A.; Garda, R.; Riera, F. A. Membrane technology for the recovery of detergent compounds: A review. J. Ind. Eng. Chem. 2012, 18, 1859–1873.

    Article  CAS  Google Scholar 

  5. Castro-Munoz, R.; Yanez-Fernandez, J.; FUa, V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016, 213, 753–762.

    Article  CAS  PubMed  Google Scholar 

  6. Akdemir, E. O.; Ozer, A. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 2009, 249, 660–666.

    Article  CAS  Google Scholar 

  7. Garcia-Castello, E.; Cassano, A.; Criscuoli, A.; Conidi, C.; Dri-oli, E. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 2010, 44, 3883–3892.

    Article  CAS  PubMed  Google Scholar 

  8. Ioannou-Ttofa, L.; Michael-Kordatou, I.; Fattas, S. C.; Eusebio, A.; Ribeiro, B.; Rusan, M.; Amer, A. R. B.; Zuraiqi, S.; Wa-ismand, M.; Linder, C.; Wiesman, Z.; Gilron, J.; Fatta-Kassi-nos, D. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res. 2017, 114, 1–13.

    Article  CAS  PubMed  Google Scholar 

  9. Destani, F.; Cassano, A.; Fazio, A.; Vincken, J. P.; Gabriele, B. Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. J. Food Eng. 2013, 117, 63–271.

    Article  CAS  Google Scholar 

  10. El-Abbassi, A.; Khayet, M.; Kiai, H.; Hafidi, A.; Garda-Payo, M. C. Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif. Technol. 2013, 327–332, 104.

    Google Scholar 

  11. Kiai, H.; Garda-Payo, M. C.; Hafidi, A.; Khayet, M. Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process. 2014, 86, 153–161.

    Article  CAS  Google Scholar 

  12. Macedonio, F.; Drioli, E. Membrane engineering for green process engineering. Engineering 2017, 3, 290–298.

    Article  Google Scholar 

  13. Chang, Y. R.; Lee, Y. J.; Lee, D. J. Membrane fouling during water or wastewater treatments: Current research updated. Taiwan Inst. Chem. Eng. 2018, 1–9.

    Google Scholar 

  14. Tijing, L. D.; Woo, Y. C.; Choi, J. S.; Lee, S.; Kim, S. H.; Shon, H. K. Fouling and its control in membrane distillation- A review. J. Membr. Sci. 2015, 475, 215–244.

    Article  CAS  Google Scholar 

  15. Li, Y.; Zhu, L. Preparation and characterization of novel poly (vinylidene fluoride) membranes using flower-like Bi2WO6 for membrane distillation. J. Taiwan Inst. Chem. Eng. 2017, 80, 867–874.

    Article  CAS  Google Scholar 

  16. Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Su-perhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415–416, 850–863.

    Google Scholar 

  17. Dong, Z. Q.; Ma, X.; Xu, Z. L.; You, W. T.; Li, F. Superhydro-phobic PVDF-PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination 2014, 347, 175–183.

    Article  CAS  Google Scholar 

  18. Meng, S.; Ye, Y.; Mansouri, J.; Chen, V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. J. Membr. Sci. 2014, 463, 102–112.

    Article  CAS  Google Scholar 

  19. Zhang, W.; Li, Y.; Liu, J.; Li, B.; Wang, S. Fabrication of hierarchical poly(vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation. J. Membr. Sci. 2017, 535, 258–267.

    Article  CAS  Google Scholar 

  20. Huang, Y. X.; Wang, Z.; Hou, D.; Lin, S. Coaxially electro-spun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 2017, 531, 122–128.

    Article  CAS  Google Scholar 

  21. Hou, D.; Ding, D. L. C.; Wang, D.; Wang, J. Fabrication and characterization of electrospun superhydrophobic PVDFHFP/ SiNPs hybrid membrane for membrane distillation. Sep. Purif. Technol. 2017, 189, 82–89.

    Article  CAS  Google Scholar 

  22. Yan, K. K.; Jiao, J.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Superhy-drophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination 2018, 437, 26–33.

    Article  CAS  Google Scholar 

  23. Hamzah, N.; Leo, C. P. Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: Separation, fouling and self-cleaning evaluation. Desalination 2017, 418, 79–88.

    Article  CAS  Google Scholar 

  24. Wang, Z.; Lin, S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 2017, 112, 38–47.

    Article  CAS  PubMed  Google Scholar 

  25. Lu, J. K.; Zuo, J.; Chang, J.; Kuan, H. N.; Chung, T. S. Omni-phobic hollow-fiber membranes for vacuum membrane distillation. Environ. Sci. Technol. 2018, 52, 4472–4480.

    Article  CAS  PubMed  Google Scholar 

  26. Chew, N. G. P.; Zhao, S.; Loh, C. H.; Permogorov, N.; Wang, R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J. Membr. Sci. 2017, 528, 126–134.

    Article  CAS  Google Scholar 

  27. Chen, Y.; Tian, M.; Li, X.; Wang, Y.; An, A. K.; Fang, J.; He, T. Anti-wetting behavior of negatively charged superhydro-phobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J. Membr. Sci. 2017, 535, 230–238.

    Article  CAS  Google Scholar 

  28. Hamzah, N.; Leo, C. P. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles. Sep. Purif Technol. 2016, 167, 79–87.

    Article  CAS  Google Scholar 

  29. Hamzah, N.; Leo, C. P. Microwave assisted extraction of tri-gona propolis: The effect of processing parameters. Inter. J. Food Eng. 2015, 11, 861–870.

    Article  CAS  Google Scholar 

  30. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817.

    Article  CAS  Google Scholar 

  31. Thomas, R.; Bilad, M. R.; Arafat, H. A. PVDF membranes for membrane distillation: Controlling pore structure, porosity, hy-drophobicity, and mechanical strength. In Membrane fabrication. ed. by Hilal, N.; Iamail, A. F.; Wright, C. Boca Raton, FL: CRC Press, 2015, 268.

    Google Scholar 

  32. Bhattacharya, M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262–296.

    Article  CAS  PubMed Central  Google Scholar 

  33. Hurst, S. M.; Farshchian, B.; Choi, J.; Kim, J.; Park, S. A universally applicable method for fabricating superhydrophobic polymer surfaces. Colloids Surf., A 2012, 407, 85–90.

    Article  CAS  Google Scholar 

  34. Rezaei, M.; Samhaber, W. Wetting behaviour of superhydro-phobic membranes coated with nanoparticles in membrane distillation. Chem. Eng. Trans. 2016, 47, 373–378.

    Google Scholar 

  35. Karunakaran, R. G.; Lu, C. H.; Zhang, Z.; Yang, S. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (< 100 nm). Langmuir 2011, 27, 4594–4602.

    Article  CAS  PubMed  Google Scholar 

  36. Eykens, L.; Sitter, K. D.; Dotremont, C.; Schepper, W. D.; Pinoy, L.; Bruggen, B. V. D. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil. Appl. Sci. 2017, 7, 118–130.

    Article  CAS  Google Scholar 

  37. Wang, Z.; Chen, Y.; Sun, X.; Duddu, R.; Lin, S. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J. Membr. Sci. 2018, 559, 183–195.

    Article  CAS  Google Scholar 

  38. Mehrparvar, A.; Rahimpour, A. Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers. J. Ind. Eng. Chem. 2015, 28, 359–368.

    Article  CAS  Google Scholar 

  39. Nath, K.; Patel, T. M.; Dave, H. K. Performance characteristics of surfactant treated commercial polyamide membrane in the nanofiltration of model solution of reactive yellow 160. J. Water Process Eng. 2016, 9, 27–37.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Education Malaysia for providing financial support via TRGS (203/PJKIMIA/67612002/U124) and MyPhD (Ms. Norhaziyana Hamzah). The authors would also like to thank Universiti Sains Malaysia for the equipment provided through Membrane Science and Technology Cluster (1001/PSF/8610013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Leo.

Electronic Supplementary Information

10118_2019_2235_MOESM1_ESM.pdf

Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzah, N., Leo, C.P. & Ooi, B.S. Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant. Chin J Polym Sci 37, 609–616 (2019). https://doi.org/10.1007/s10118-019-2235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2235-y

Keywords

Navigation