Skip to main content

Advertisement

Log in

Characterizations and Photothermal Properties of Narrow Bandgap Conjugated Polymer Nanoparticles

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Photothermal therapy (PTT) is a minimally invasive treatment that kills cancer cells by converting photon energy into heat. The past few decades have witnessed the booming development of photothermal materials, mainly focusing on precious metal nanomaterials and carbon nanomaterials, such as nanogold and silver and nanocarbon materials for near-infrared (NIR) light-triggered PTT. As precious metals are expensive and potentially harmful to humans, exploration and development of a new type of photothermal materials has become a research hotspot in this field. Herein, we report narrow bandgap conjugated polymer nanoparticles (PDPP NPs) based on pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) with intense NIR absorption at 900 nm, as well as a photothermal energy conversion efficiency of 75%. This polymer nanoparticle is essentially non-toxic, as the cell viability of mouse remained more than 90%, even when the concentration of PDPP NPs was at 0.5 mg·mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mi, Y.; Shao, Z. Y.; Vang, J.; Kaidar, O.; Wang, A. Z. Application of nanotechnology to cancer radiotherapy. Cancer Nano. 2016, 7, 11.

    Article  Google Scholar 

  2. Zhao, W.; Li, A. H.; Zhang, A. T.; Zheng, Y. W.; Liu, J. Q. Recent advance in functional-polymer-decorated transional-metal nanomaterials for bioimaging and cancer therapy. Chem. Med. Chem.2018, 13, 2134–2149.

    Article  CAS  Google Scholar 

  3. Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B2018, 6, 349.

    Article  CAS  Google Scholar 

  4. Li, J. C.; Rao, J. H.; Pu, K. Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials2018, 155, 217–235.

    Article  CAS  Google Scholar 

  5. Hyo, S. J.; Verwilst, P.; Sharma, A. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev.2018, 47, 2280.

    Article  Google Scholar 

  6. Cai, Y.; Si, W. L.; Huang, W. Organic dye based nanoparticles for cancer phototheranostics. Small.2018, 14, 1704247.

    Article  Google Scholar 

  7. Chen, Q.; Xu, L. G.; Liang, C. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun.2016, 7, 13193.

    Article  CAS  Google Scholar 

  8. Liu, Y. J.; Bhattara, P.; Dai, Z. F. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev.2019, 48, 2053.

    Article  CAS  Google Scholar 

  9. Zhen, X.; Feng, X. H.; Xie, C.; Zheng, Y. J.; Pu, K. Y. Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biometerials0017, 127, 97–106.

    Article  Google Scholar 

  10. Syamal, S.; Mohanan, P. V. Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro. Lett. 2019, 11, 6.

    Article  Google Scholar 

  11. Jiang, B. P.; Zhou, B.; Lin, Z. X.; Liang, H.; Shen, X. C. Recent advances in carbon nanomaterials for cancer phototherapy. Chem. Eur. J.2019, 25, 3993–4004.

    Article  CAS  Google Scholar 

  12. Poursalehia, Z.; Salehib, R.; Samadic, N.; Rastad, H. S.; Mansoorie, B. A simple strategy for chemo-photothermal ablation of breast cancer cells by novel smart gold nanoparticles. Photodigan. Photodyn.2019, 28, 25–37.

    Article  Google Scholar 

  13. Oluwole, D. O.; Manotob, S. L.; Malabib, R.; Maphangab, C. Evaluation of the photophysicochemical properties and photodynamic therapy activity of nanoconjugates of zinc phthalocyanine linked to glutathione capped Au and Au3Ag1 nanoparticles. Dyes Pigments2018, 150, 139–150.

    Article  CAS  Google Scholar 

  14. Lopatynsky, A. M.; Malymon, Y. O.; Lytvyn, V. K.; Mogylnyi, I. V.; Rachkov, A. E. Solid and hollow gold nanostructures for nanomedicine: comparison of photothermal properties. Plasmonics.2018, 13, 1659–1669.

    Article  Google Scholar 

  15. Rozanova, N.; Zhang, J. Z. Photothermal ablation therapy for cancer based on metal nanostructures. Sci. China B2009, 10, 1559–1575.

    Article  Google Scholar 

  16. Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y. High-Detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science2009, 325, 1665–1667.

    Article  CAS  Google Scholar 

  17. Yang, J.; Cai, Y.; Zhou, Y. X.; Zhang, C. X.; Liang, P. P.; Zhao, B. M.; Shao, J. J.; Fu, N. N.; Huang, W.; Dong, X. C. Highly effective thieno[2,3-b]indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy. Dyes Pigments.2017, 147, 270–282.

    Article  CAS  Google Scholar 

  18. Cai, Y.; Tang, Q. Y.; Wu, X. J.; Si, W. L.; Huang, W. Diketopyrrolopyrrole derivatives grafting hyaluronic acid for targeted photodynamic therapy. Chemistry Select.2016, 1, 3071–3074.

    CAS  Google Scholar 

  19. Wang, W.; Zhang, F.; Bai, H.; Li, L.; Gao, M.; Zhang, M. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response. Nanoscale2016, 8, 5578–5586.

    Article  CAS  Google Scholar 

  20. Qi, J.; Zhou, X. K.; Yang, D. Z.; Qiao, W. Q.; Wang, Z. Y. Optimization of solubility, film morphology and photodetector performance by molecular side-chain engineering of low-bandgap thienothiadiazole-based polymers. Adv. Funct. Mater.2014, 24, 7605–7612.

    Article  CAS  Google Scholar 

  21. Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano2016, 10, 4472–4481.

    Article  CAS  Google Scholar 

  22. Dong, R.; Bi, C.; Dong, Q. F.; Guo, F. W.; Yuan, Y. B.; Fang, Y. J.; Xiao, Z. G.; Huang, J. S. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv. Opt. Mater. 2014, 2, 549–554.

    Article  CAS  Google Scholar 

  23. Hendriks, K. H.; Heintges G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. Int. Ed.2013, 52, 8341–8344.

    Article  CAS  Google Scholar 

  24. Li, W. T.; Wang, L. Y.; Tang, H. Diketopyrrolopyrrole-based fluorescent probes for detection and bioimaging: current progresses and perspectives. Dyes Pigments2019, 162, 934–950.

    Article  CAS  Google Scholar 

  25. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmonresonant gold nanoparticles. J. Phys. Chem. C2007, 111, 3636–3641.

    Article  CAS  Google Scholar 

  26. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G. Copper selenide nanocrystals for photothermal therapy. Nano Lett.2011, 11, 2560–2566.

    Article  CAS  Google Scholar 

  27. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater.2013, 25, 1353–1359.

    Article  CAS  Google Scholar 

  28. Zhang, W.; Lin, W. H.; Wang, X.; Li, C. N.; Liu, S.; Xie, Z. G. Hybrid nanomaterials of conjugated polymers and albumin for precise photothermal therapy. ACS Appl. Mater. Interfaces2019, 11, 278–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21474105) and the Project of the Natural Science and En-gineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Qiang Qiao or Zhi-Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YL., Ren, JT., Gao, HY. et al. Characterizations and Photothermal Properties of Narrow Bandgap Conjugated Polymer Nanoparticles. Chin J Polym Sci 38, 814–818 (2020). https://doi.org/10.1007/s10118-020-2420-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2420-z

Keywords

Navigation