Skip to main content
Log in

Molecular Simulations in Macromolecular Science

  • Tutorial
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Molecular simulations are now an essential part of modern chemistry and physics, especially for the investigation of macromolecules. They have evolved into mature approaches that can be used effectively to understand the structure-to-property relationships of diverse macromolecular systems. In this article, we provide a tutorial on molecular simulations, focusing on the technical and practical aspects. Several prominent and classical simulation methods and software are introduced. The applications of molecular simulations in various directions of macromolecular science are then featured by representative systems, including self-assembly, crystallization, chemical reaction, and some typical non-equilibrium systems. This tutorial paper provides a useful overview of molecular simulations in the rapid progress of macromolecular science, and suggests guidance for researchers who start exploiting molecular simulations in their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel, D.; Smit, B. Understanding Molecular Simulation: from Algorithms to Applications. Elsevier: 2001, Vol. 1.

  2. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids. Oxford University Press: 2017.

  3. Levine, B. G.; LeBard, D. N.; DeVane, R.; Shinoda, W.; Kohlmeyer, A.; Klein, M. L. Micellization studied by GPU-accelerated coarsegrained molecular dynamics. J. Chem. Theory. Comput. 2011, 7, 4135–45.

    CAS  PubMed  Google Scholar 

  4. Pall, S.; Zhmurov, A.; Bauer, P.; Abraham, M.; Lundborg, M.; Gray, A.; Hess, B.; Lindahl, E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110.

    CAS  PubMed  Google Scholar 

  5. Smith, W.; Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graphics 1996, 14, 136–141.

    CAS  Google Scholar 

  6. Gotz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012, 8, 1542–1555.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Plimpton, S. Fast parallel algorithms for shrot-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  8. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson, J. A.; Glaser, J.; Glotzer, S. C. HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comp. Mater. Sci. 2020, 173, 109363.

    CAS  Google Scholar 

  10. Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013, 34, 2197–2211.

    CAS  PubMed  Google Scholar 

  11. Berendsen, H. J. C.; Spoel, D. V. D.; Drunen, R. V. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56.

    CAS  Google Scholar 

  12. Rapaport, D. C. The Art of Molecular Dynamics Simulation. Cambridge University Press: 2004.

  13. Hu, W. B. Computer simulation of polymers: bridging the gap between theory and experiment. Chinese J. Polym. Sci. 2022, 40, 709–710.

    CAS  Google Scholar 

  14. Xu, Z.; Gao, L.; Chen, P.; Yan, L. T. Diffusive transport of nanoscale objects through cell membranes: a computational perspective. Soft Matter 2020, 16, 3869–3881.

    CAS  PubMed  Google Scholar 

  15. Laurien, M.; Demir, B.; Büttemeyer, H.; Herrmann, A. S.; Walsh, T. R.; Ciacchi, L. C. Atomistic modeling of the formation of a thermoset/thermoplastic interphase during co-curing. Macromolecules 2018, 51, 3983–3993.

    CAS  Google Scholar 

  16. Li, C.; Strachan, A. Molecular scale simulations on thermoset polymers: a review. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 103–122.

    CAS  Google Scholar 

  17. Nielsen, O. H.; Martin, R. M. First-principles calculation of stress. Phys. Rev. Lett. 1983, 50, 697–700.

    CAS  Google Scholar 

  18. Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Challenges for density functional theory. Chem. Rev. 2012, 112, 289–320.

    CAS  PubMed  Google Scholar 

  19. Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. Coarse-grained protein models and their applications. Chem. Rev. 2016, 116, 7898–7936.

    CAS  PubMed  Google Scholar 

  20. Vendruscolo, M.; Dobson, C. M. Protein dynamics: Moore’s law in molecular biology. Curr. Biol. 2011, 21, R68–70.

    CAS  PubMed  Google Scholar 

  21. Dai, X. B.; Zhang, Y. X.; Gao, L. J.; Yan, L. T. Superentropy effect and macromolecular entropy control strategy. Acta Polymerica Sinica (in Chinese) 2021, 52, 1076–1099.

    CAS  Google Scholar 

  22. Xu, Z.; Liu, G.; Gao, L.; Xu, D.; Wan, H.; Dai, X.; Zhang, X.; Tao, L.; Yan, L. T. Configurational entropy-enabled thermostability of cell membranes in extremophiles: from molecular mechanism to bioinspired design. Nano Lett. 2023, 23, 1109–1118.

    CAS  PubMed  Google Scholar 

  23. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Salvatore Profeta, J.; Weiner, P. A New force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984, 106, 765–784.

    CAS  Google Scholar 

  24. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217.

    CAS  Google Scholar 

  25. Jorgensen, W. L.; Tirado-Rives, J. The OPLS potential functions for proteins. energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666.

    CAS  PubMed  Google Scholar 

  26. Dauber-Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Structure and energetics of ligand binding to proteins: Escherichia Coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 1988, 4, 31–47.

    CAS  PubMed  Google Scholar 

  27. Leonard, A. N.; Wang, E.; Monje-Galvan, V.; Klauda, J. B. Developing and testing of lipid force fields with applications to modeling cellular membranes. Chem. Rev. 2019, 119, 6227–6269.

    CAS  PubMed  Google Scholar 

  28. Cellmer, T.; Fawzi, N. L. Coarse-grained simulations of protein aggregation. Methods Mol. Biol. 2012, 899, 453–470.

    CAS  PubMed  Google Scholar 

  29. Ulam, S. M.; Von Neumann, J. Random ergodic theorems. Bull. Amer. Math. Soc. 1945, 51, 660.

    Google Scholar 

  30. Groot, R. D.; Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435.

    CAS  Google Scholar 

  31. Español, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 1995, 30, 191–196.

    Google Scholar 

  32. Flory, P. J. Principles of Polymer Chemistry. Cornell University Press: 1953.

  33. Ermak, D. L.; McCammon, J. A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69, 1352.

    CAS  Google Scholar 

  34. Hao, Q.-H.; Zheng, Z.; Xia, G.; Tan, H. G. Brownian dynamics simulations of rigid polyelectrolyte chains grafting to spherical colloid. Chinese J. Polym. Sci. 2018, 36, 791–798.

    CAS  Google Scholar 

  35. Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Victor Pryamitsyn; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Anisotropic self-assembly of spherical polymergrafted nanoparticles. Nat. Mater. 2009, 8, 354–359.

    CAS  PubMed  Google Scholar 

  36. Harmat, A. L.; Javan Nikkhah, S.; Sammalkorpi, M. Dissipative particle dynamics simulations of H-shaped diblock copolymer self-assembly in solvent. Polymer 2021, 233.

    Google Scholar 

  37. Carlson, J. C. T.; Jena, S. S.; Flenniken, M.; Chou, T. F.; Siegel, R. A.; Wagner, C. R. Chemically controlled self-assembly of protein nanorings. J. Am. Chem. Soc. 2006, 128, 7630–7638.

    CAS  PubMed  Google Scholar 

  38. Bai, Y.; Luo, Q.; Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 2016, 45, 2756–2767.

    CAS  PubMed  Google Scholar 

  39. Fu, I. W.; Markegard, C. B.; Nguyen, H. D. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. Langmuir 2015, 31, 315–324.

    CAS  PubMed  Google Scholar 

  40. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    CAS  PubMed  Google Scholar 

  41. Whitesides, G. M.; Boncheva, M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 2002, 99, 4769–4774.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, G.; Huang, Z.; Xu, Z.; Yan, L. T. Tailoring interfacial nanoparticle organization through entropy. Acc. Chem. Res. 2018, 51, 900–909.

    CAS  PubMed  Google Scholar 

  43. Yamamoto, T. Molecular dynamics modeling of polymer crystallization from the melt. Polymer 2004, 45, 1357–1364.

    CAS  Google Scholar 

  44. Yamamoto, T. Molecular dynamics of polymer crystallization revisited: crystallization from the melt and the glass in longer polyethylene. J. Chem. Phys. 2013, 139, 054903.

    PubMed  Google Scholar 

  45. Xu, D.; Lu, Y. Y.; Luo, C. F. Shape accuracy and residual stress distribution of nano-molded semicrystalline polymer: a simulation study. Chinese J. Polym. Sci. 2022, 40, 642–650.

    CAS  Google Scholar 

  46. Muthukumar, M., Modeling Polymer Crystallization. In Interphases and Mesophases in Polymer Crystallization III, 2005; Vol. 191, pp. 241–274.

    CAS  Google Scholar 

  47. Gee, R. H.; Lacevic, N.; Fried, L. E. Atomistic simulations of spinodal phase separation preceding polymer crystallization. Nat. Mater. 2006, 5, 39–43.

    CAS  PubMed  Google Scholar 

  48. Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W. Shish-Kebab crystallites initiated by shear fracture in bulk polymers. Macromolecules 2018, 51, 480–487.

    CAS  Google Scholar 

  49. Luo, C.; Kröger, M.; Sommer, J. U. Molecular dynamics simulations of polymer crystallization under confinement: entanglement effect. Polymer 2017, 109, 71–84.

    CAS  Google Scholar 

  50. Najafi, M.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Haddadi-Asl, V. A comprehensive monte carlo simulation of styrene atom transfer radical polymerization. Chinese J. Polym. Sci. 2010, 28, 483–497.

    CAS  Google Scholar 

  51. Rienstra-Kiracofe, J. C.; Allen, W. D.; III, H. F. S. The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J. Phys. Chem. A 2000, 104, 9823–9840.

    CAS  Google Scholar 

  52. Strachan, A.; van Duin, A. C.; Chakraborty, D.; Dasgupta, S.; Goddard, W. A. 3rd. Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys. Rev. Lett. 2003, 91, 098301.

    PubMed  Google Scholar 

  53. Ludwig, J.; Vlachos, D. G. Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. J. Phys. Chem. B 2006, 110, 4274–4282.

    CAS  PubMed  Google Scholar 

  54. Chenoweth, K.; Duin, A. C. T. V.; Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053.

    CAS  PubMed  Google Scholar 

  55. Chenoweth, K.; Cheung, S.; Duin, A. C. T. V.; III, W. A. G.; Kober, E. M. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the reaxff reactive force fiel. J. Am. Chem. Soc. 2005, 127, 7192–7202.

    CAS  PubMed  Google Scholar 

  56. Yan, Y. D.; Xue, Y. H.; Zhao, H. Y.; Liu, H.; Lu, Z. Y.; Gu, F. L. Insight into the polymerization-induced self-assembly via a realistic computer simulation strategy. Macromolecules 2019, 52, 6169–6180.

    CAS  Google Scholar 

  57. Nagayama, G.; Takematsu, M.; Mizuguchi, H.; Tsuruta, T. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface. J. Chem. Phys. 2015, 143, 014706.

    PubMed  Google Scholar 

  58. Katiyar, P.; Singh, J. K. Evaporation induced self-assembly of different shapes and sizes of nanoparticles: a molecular dynamics study. J. Chem. Phys. 2019, 150, 044708.

    PubMed  Google Scholar 

  59. Sherman, Z. M.; Swan, J. W. Transmutable colloidal crystals and active phase separation via dynamic, directed self-assembly with toggled external fields. ACS Nano 2019, 13, 764–771.

    CAS  PubMed  Google Scholar 

  60. Mallory, S. A.; Valeriani, C.; Cacciuto, A. An active approach to colloidal self-assembly. Annu. Rev. Phys. Chem. 2018, 69, 59–79.

    CAS  PubMed  Google Scholar 

  61. Tung, C.; Harder, J.; Valeriani, C.; Cacciuto, A. Micro-phase separation in two dimensional suspensions of self-propelled spheres and dumbbells. Soft Matter 2016, 12, 555–561.

    CAS  PubMed  Google Scholar 

  62. Lu, H.; Isralewitz, B.; Krammer, A.; Vogel, V.; Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 1998, 75, 662–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yan, L. T.; Xie, X. M. Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: structures, properties and external field effects. Prog. Polym. Sci. 2013, 38, 369–405.

    CAS  Google Scholar 

  64. Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095–1099.

    CAS  PubMed  Google Scholar 

  65. Joseph, A.; Contini, C.; Cecchin, D.; Nyberg, S.; Ruiz-Perez, L.; Gaitzsch, J.; Fullstone, G.; Tian, X.; Azizi, J.; Preston, J.; Volpe, G.; Battaglia, G. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 2017, 3, e1700362.

    PubMed  PubMed Central  Google Scholar 

  66. Do, P. C.; Lee, E. H.; Le, L. Steered molecular dynamics simulation in rational drug design. J. Chem. Inf. Model. 2018, 58, 1473–1482.

    CAS  PubMed  Google Scholar 

  67. Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K. Computational molecular dynamics: challenges, methods. Lect. Notes Comput. Sci. Eng. 1999, 4, 39–65.

    Google Scholar 

  68. Zhang, X.; Wang, Y.; Xia, R.; Wu, B.; Chen, P.; Qian, J. S.; Liang, H. J. Effect of chain configuration on thermal conductivity of polyethylene—a molecular dynamic simulation study. Chinese J. Polym. Sci. 2020, 38, 1418–1425.

    CAS  Google Scholar 

  69. Yang, Y. I.; Shao, Q.; Zhang, J.; Yang, L.; Gao, Y. Q. Enhanced sampling in molecular dynamics. J. Chem. Phys. 2019, 151, 070902.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22025302 and 21873053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Tang Yan.

Ethics declarations

The authors declare no interest conflict.

Additional information

Biography

Li-Tang Yan received his Ph.D. in polymer physics and chemistry at Tsinghua University in 2007. Then he went to Bayreuth University in Germany as a Humboldt Research Fellow. In 2010, he joined Prof. Anna Balazs’ group at University of Pittsburgh in USA as a Postdoctoral Research Fellow. He returned to Tsinghua University as a faculty from May 2011, and now is a full professor with tenure. He leads a polymer theory and physics group working on polymer theory and simulation, soft condense matter physics, biophysics and nonequilibrium physics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wan, HX., Yao, XR. et al. Molecular Simulations in Macromolecular Science. Chin J Polym Sci 41, 1361–1370 (2023). https://doi.org/10.1007/s10118-023-2968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2968-5

Keywords

Navigation