Skip to main content
Log in

Gene Expression Profiles of Spleen, Liver, and Head Kidney in Turbot (Scophthalmus maximus) Along the Infection Process with Philasterides dicentrarchi Using an Immune-Enriched Oligo-Microarray

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

We evaluated the expression profiles of turbot in spleen, liver, and head kidney across five temporal points of the Philasterides dicentrarchi infection process using an 8x15K Agilent oligo-microarray. The microarray included 2,176 different fivefold replicated gene probes designed from a turbot 3′ sequenced EST database. We were able to identify 221 differentially expressed (DE) genes (8.1% of the whole microarray), 113 in spleen, 83 in liver, and 90 in head kidney, in at least 1 of the 5 temporal points sampled for each organ. Most of these genes could be annotated (83.0%) and functionally categorized using GO terms (69.1%) after the additional sequencing of DE genes from the 5′ end. Many DE genes were related to innate and acquired immune functions. A high proportion of DE genes were organ-specific (70.6%), although their associated GO functions showed notable similarities in the three organs. The most striking difference in functional distribution was observed between the up- and downregulated gene groups. Upregulated genes were mostly associated to immune functions, while downregulated ones mainly involved metabolism-related genes. Genetic response appeared clustered in a few groups of genes with similar expression profiles along the temporal series. The information obtained will aid to understand the turbot immune response and will specifically be valuable to develop strategies of defense to P. dicentrarchi to achieve more resistant broodstocks for turbot industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison DB, Cui XQ, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7:55–65

    Article  PubMed  CAS  Google Scholar 

  • Baerwald MR, Petersen JL, Hedrick RP, Schisler GJ, May B (2010) A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106:920–926

    Article  PubMed  Google Scholar 

  • Baggiolini M, Wymann MP (1990) Turning on the respiratory burst. Trends Biochem Sci 15:69–72

    Article  PubMed  CAS  Google Scholar 

  • Bisset SA, Morris CA (1996) Feasibility and implications of breeding sheep for resilience to nematode challenge. Int J Parasitol 26:857–868

    Article  PubMed  CAS  Google Scholar 

  • Brattgjerd S, Evensen O (1996) A sequential light microscopic and ultrastructural study on the uptake and handling of Vibrio salmonicida in the head kidney phagocytes of experimentally infected Atlantic salmon, Salmo salar L. Vet Pathol 33:55–65

    Article  PubMed  CAS  Google Scholar 

  • Budiño B, Pata MP, Leiro J, Lamas J (2011a) Differences in the in vitro susceptibility to resveratrol and other chemical compounds among several Philasterides dicentrarchi isolates from turbot. Parasitol Res. doi:10.1007/s00436-011-2664-1

  • Budiño B, Lamas J, Pata MP, Arranz JA, Sanmartín ML, Leiro J (2011b) Intraspecific variability in several isolates of Philasterides dicentrarchi (syn. Miamiensis avidus), a scuticociliate parasite of farmed turbot. Vet Parasitol 175:260–272

    Article  PubMed  Google Scholar 

  • Budiño B, Lamas J, Arranz JA, González A, Pata MP, Devesa S, Leiro J (2011c) Coexistence of several Philasterides dicentrarchi strains in a turbot fish farm. Aquaculture. doi:10.1016/j.aquaculture.2011.09.039

  • Castro R, Lamas J, Morais P, Sanmartín ML, Orallo F, Leiro J (2008) Resveratrol modulates innate and inflammatory responses in fish leucocytes. Vet Immunol Immunopathol 126:9–19

    Article  PubMed  CAS  Google Scholar 

  • Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  PubMed  CAS  Google Scholar 

  • Clark RA (1999) Activation of the neutrophil respiratory burst oxidase. J Infect Dis 179:309–317

    Article  Google Scholar 

  • Danneving BH, Lauve A, Press C, Landsverk T (1994) Receptor-mediated endocytosis and phagocytosis by rainbow trout head kidney sinusoidal cells. Fish Shellfish Immunol 4:3–18

    Article  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    Article  PubMed  CAS  Google Scholar 

  • Dopazo J, Carazo JM (1997) Phylogenetic reconstruction using a growing neural network that adopts the topology of a phylogenetic tree. J Mol Evol 44:226–233

    Article  PubMed  CAS  Google Scholar 

  • Douch PGC, Green RS, Morris CA, Bisset SA, Vlassoff A, Baker RL, Watson TG, Hurford AP, Wheeler M (1995) Genetic and phenotypic relationships among anti-Trichostrongylus colubriformis antibody level, faecal egg count and body weight traits in grazing Romney sheep. Livest Prod Sci 41:121–132

    Article  Google Scholar 

  • Dyková I, Figueras A (1994) Histopathological changes in turbot Scophthalmus maximus due to a histophagous ciliate. Dis Aquat Org 18:5–9

    Article  Google Scholar 

  • Ferraresso S, Milan M, Pellizzari C, Vitulo N, Reinhardt R, Canario AVM, Patarnello T, Bargelloni L (2010) Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity. BMC Genomics 11:354

    Article  PubMed  Google Scholar 

  • Fleury E, Moal J, Boulo V, Daniel JY, Mazurais D, Hénaut A, Corporeau C, Boudry P, Favrel P, Huvet A (2010) Microarray-based identification of gonad transcripts differentially expressed between lines of Pacific oyster selected to be resistant or susceptible to summer mortality. Mar Biotechnol 12:326–339

    Article  PubMed  CAS  Google Scholar 

  • Gilbey J, Verspoor E, Mo TA, Sterud E, Olstad K, Hytterød S, Jones C, Noble L (2006) Identification of genetic markers associated with Gyrodactylus salaris resistance in Atlantic salmon Salmo salar. Dis Aquat Organ 71:119–129

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Paramá A, Alvarez MF, Leiro J, Fernández J, Sanmartín ML (2001) Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Dis Aquat Organ 46:47–55

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Paramá A, Alvarez MF, Leiro J, Sanmartín ML (2002) Antiprotozoals effective in vitro against the scuticociliate fish pathogen Philasterides dicentrarchi. Dis Aquat Organ 49:191–197

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Paramá A, Alvarez MF, Leiro J, Ubeira FM, Sanmartin ML (2003a) Philasterides dicentrarchi (Cilliophora: Scuticociliatida) expresses surface immobilization antigens that probably induce protective immune responses in turbot. Parasitology 126:125–134

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Paramá A, Alvarez MF, Leiro J, Aja C, Sanmartín ML (2003b) In vitro growth requirements for the fish pathogen Philasterides dicentrarchi (Ciliophora, Scuticociliatida). Vet Parasitol 111:19–30

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen SM, Afanasyev S, Krasnov A (2008) Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics 9:179

    Article  PubMed  Google Scholar 

  • Kim SM, Cho JB, Kim SK, Nam YK, Kim KH (2004) Occurrence of scuticociliatosis in olive flounder Paralichthys olivaceus by Phiasterides dicentrarchi (Ciliophora: scuticociliatida). Dis Aquat Organ 62:233–238

    Article  PubMed  Google Scholar 

  • Kwon SR, Kim CS, Kim KH (2003) Differences between short- and long-term cultures of Uronema marinum (Ciliophora: Scuticociliatida) in chemiluminescence inhibitory activity, antioxidative enzyme and protease activity. Aquaculture 221:107–114

    Article  CAS  Google Scholar 

  • Lamas J, Sanmartín ML, Paramá AI, Castro R, Cabaleiro S, Ruiz de Ocenda MV, Barja JL, Leiro J (2008) Optimization of an inactivated vaccine against a scuticociliate parasite of turbot: Effect of antigen, formalin and adjuvant concentration on antibody response and protection against the pathogen. Aquaculture 278:22–26

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee EH, Kim KH (2010) Molecular cloning and functional characterization of protein phosphatase 2C of two scuticociliates—Uronema marinum and Miamiensis avidus (Ciliophora: Scuticociliatia). Acta Protozoologica 49:281–288

    CAS  Google Scholar 

  • Lee EH, Kim KH (2011) Identification of differentially expressed genes in parasitic phase Miamiensis avidus (Ciliophora: Scuticociliatia) using suppression subtractive hybridization. Dis Aquat Organ 94:135–142

    Article  PubMed  CAS  Google Scholar 

  • Lee EH, Kim SM, Kwon SR, Kim SK, Nam YK, Kim KH (2004) Comparison of toxic effects of nitric oxide and peroxynitrite on Uronema marinum (Ciliata: Scuticociliatida). Dis Aquat Organ 58:255–260

    Article  PubMed  CAS  Google Scholar 

  • Leiro J, Arranz JA, Paramá A, Alvarez MF, Sanmartín ML (2004a) In vitro effects of the polyphenols resveratrol, mangiferin and (-)-epigallocatechin-3-gallate on the scuticociliate fish pathogen Philasterides dicentrarchi. Dis Aquat Organ 59:171–174

    Article  PubMed  CAS  Google Scholar 

  • Leiro J, Arranz JA, Iglesias R, Ubeira FM, Sanmartín ML (2004b) Effects of the histiophagous ciliate Philasterides dicentrarchi on turbot phagocyte responses. Fish Shellfish Immunol 17:27–39

    Article  PubMed  CAS  Google Scholar 

  • Leiro J, Piazzón MC, Budiño B, Sanmartín ML, Lamas J (2008) Complement-mediated killing of Philasterides dicentrarchi (Ciliophora) by turbot serum: relative importance of alternative and classical pathways. Parasite Immunol 30:535–543

    Article  PubMed  CAS  Google Scholar 

  • Lo J, Lee S, Xu M, Liu F, Ruan H, Eun A, He Y, Ma W, Wang W, Wen Z, Peng J (2005) 15,000 Unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466

    Article  Google Scholar 

  • Mackinnon MJ, Corbet NJ, Meyer K, Burrow HM, Bryan RP, Hetzel DJS (1991) Genetic parameters for testosterone response to GnRH stimulation and scrotal circumference in tropical beef bulls. Livest Prod Sci 29:297–309

    Article  Google Scholar 

  • Millán A, Gómez-Tato A, Fernández C, Pardo BG, Álvarez-Dios JA, Calaza M, Bouza C, Vázquez M, Cabaleiro S, Martínez P (2010) Design and performance of a turbot (Scophthalmus maximus) oligo-microarray based on ESTs from immune tissues. Mar Biotechnol 12:452–465

    Article  PubMed  Google Scholar 

  • Millán A, Gómez-Tato A, Pardo BG, Fernández C, Bouza C, Vera M, Alvarez-Dios JA, Cabaleiro S, Lamas J, Lemos ML, Martínez P (2011) Gene expression profiles of spleen, liver and head kidney in turbot (Scophthalmus maximus) along the infection process with Aeromonas salmonicida using an immune-enriched oligo-microarray. Mar Biotechnol 13:1099–1114

    Article  PubMed  Google Scholar 

  • Miron M, Woody OZ, Marcil A, Murie C, Sladek R, Nadon R (2006) A methodology for global validation of microarray experiment. BMC Bioinforma 7:333

    Article  Google Scholar 

  • Morais P, Lamas J, Sanmartín ML, Orallo F, Leiro J (2009) Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates. Protist 160:552–564

    Article  PubMed  CAS  Google Scholar 

  • Morey JS, Ryan JC, VanDolah FM (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193

    Article  PubMed  CAS  Google Scholar 

  • Moustafa EM, Naota M, Morita T, Tange N, Shimada A (2010) Pathological study on the scuticociliatosis affecting farmed Japanese flounder (Paralichthys olivaceus) in Japan. J Vet Med Sci 72:1359–1362

    Article  PubMed  Google Scholar 

  • Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH (2003) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34:102–115

    Article  PubMed  CAS  Google Scholar 

  • Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquacult Res 42:103–114

    Article  Google Scholar 

  • Ototake M, Matsusato T (1986) Notes on scuticociliata infection of cultured juvenile flounder Paralichthys olivaceus. Bull Natl Res Inst Aquacult 9:65–68

    Google Scholar 

  • Palenzuela O, Sitja-Bobadilla A, Riaza A, Silva R, Aran J, Alvarez-Pellitero P (2009) Antibody responses of turbot Psetta maxima against various antigen formulations of scuticociliates Ciliophora. Dis Aquat Org 86:123–134

    Article  PubMed  CAS  Google Scholar 

  • Paramá A, Iglesias R, Álvarez MF, Leiro J, Aja C, Sanmartín ML (2003) Philasterides dicentrarchi (Ciliophora: Scuticociliatida): experimental infection and posible routes of entry in farmed turbot (Scophhalmus maximus). Aquaculture 217:73–80

    Article  Google Scholar 

  • Paramá A, Iglesias R, Alvarez MF, Sanmartín ML, Leiro J (2004a) Chemotactic responses of the fish-parasitic scuticociliate Philasterides dicentrarchi to blood and blood components of the turbot Scophthalmus maximus, evaluated using a new microplate multiassay. J Microbiol Methods 58:361–366

    Article  PubMed  Google Scholar 

  • Paramá A, Iglesias R, Álvarez MF, Leiro JM, Quintela JM, Peinador C, González L, Riguera R, Sanmartín ML (2004b) In vitro efficacy of new antiprotozoals against Philasterides dicentrarchi (Ciliophora, Scuticociliatida). Dis Aquat Org 62:97–102

    Article  PubMed  Google Scholar 

  • Paramá A, Luzardo A, Blanco-Méndez J, Sanmartín ML, Leiro J (2005) In vitro efficacy of glutaraldehyde-crosslinked chitosan microspheres against the fish-pathogenic ciliate Philasterides dicentrarchi. Dis Aquat Org 64:151–158

    Article  PubMed  Google Scholar 

  • Paramá A, Castro R, Lamas J, Sanmartín ML, Santamarina MT, Leiro J (2007) Scuticociliate proteinases may modulate turbot immune response by inducing apoptosis in pronephric leucocytes. Int J Parasitol 37:87–95

    Article  PubMed  Google Scholar 

  • Pardo BG, Fernández C, Millán A, Bouza C, Vázquez-López A, Vera M, Alvarez-Dios JA, Calaza M, Gómez-Tato A, Vázquez M, Cabaleiro S, Magariños B, Lemos ML, Leiro JM, Martínez P (2008) Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens. BMC Vet Res 4:37

    Article  PubMed  Google Scholar 

  • Park KC, Osborne JA, Montes A, Dios S, Nerland AH, Novoa B, Figueras A, Brown LL, Johnson SC (2009) Immunological responses of turbot (Psetta maxima) to nodavirus infection or polyriboinosinic polyribocytidylic acid (pIC) stimulation, using expressed sequence tags (ESTs) analysis and cDNA microarrays. Fish Shellfish Immunol 26:91–108

    Article  PubMed  CAS  Google Scholar 

  • Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang L, Hurban P, de Longueville F, Fuscoe JC, Tong W, Shi L, Wolfinger RD (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24:1140–1150

    Article  PubMed  CAS  Google Scholar 

  • Piazzon C, Lamas J, Castro R, Budiño B, Cabaleiro S, Sanmartín ML, Leiro J (2008) Antigenic and cross-protection studies on two turbot scuticociliate isolates. Fish Shellfish Immunol 25:417–424

    Article  PubMed  CAS  Google Scholar 

  • Piazzon C, Lamas J, Leiro J (2011a) Role of scuticociliate proteinases in infection success in turbot, Psetta maxima (L.). Parasite Immunol 33:535–544

    Article  PubMed  CAS  Google Scholar 

  • Piazzon MC, Wiegertjes GF, Leiro J, Lamas J (2011b) Turbot resistance to Philasterides dicentrarchi is more dependent on humoral than on cellular immune responses. Fish Shellfish Immunol 30:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Quintela JM, Peinador C, González L, Iglesias R, Paramá A, Álvarez MF, Sanmartín ML, Riguera R (2003) Piperazine N-substituted naphthyridines, pyrodithienopyrimidines and pyridothienotriazines: new antiprotozoals active against Philasterides dicentrarchi. Eur J Med Chem 38:265–275

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra L, Simmons D, Harding CV (2009) MHC molecules and microbial antigen processing in phagosomes. Curr Opin Immunol 21:98–104

    Article  PubMed  CAS  Google Scholar 

  • Rise ML, Jones SRM, Brown GD, von Schalburg KR, Davidson WS, Koop BF (2004) Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol Genomics 20:21–35

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Salinas I, Maas EW, Muñoz P (2011) Characterization of acid phosphatases from marine scuticociliate parasites and their activation by host’s factors. Parasitology 138:836–847

    Article  CAS  Google Scholar 

  • Seo JS, Kim MS, Lee SH, Kim KH, Lee HH, Jeong HD, Chung JK (2005) Uronema marinum: identification and biochemical characterization of phosphatidylcholine-hydrolyzing phospholipase C. Exp Parasitol 110:22–29

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Schmidt HJ (2007) Antigenic variation in ciliates: antigen structure, function, expression. J Eukaryot Microbiol 54:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sitjà-Bobadilla A, Palenzuela O, Alvarez-Pellitero P (2008) Immune response of turbot, Psetta maxima (L.) (Pisces: Teleostei), to formalin-killed scuticociliates (Ciliophora) and adjuvanted formulations. Fish Shellfish Immunol 24:1–10

    Article  PubMed  Google Scholar 

  • Skugor S, Jørgensen SM, Gjerde B, Krasnov A (2009) Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. BMC Genomics 10:503

    Article  PubMed  Google Scholar 

  • Song JY, Sasaki K, Okada T, Sakashita M, Kawakami H, Matsuoka S, Kang HS, Nakayama K, Jung SJ, Oh MJ, Kitamura SI (2009) Antigenic differences of the scuticociliate Miamiensis avidus from Japan. J Fish Dis 32:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Sterud E, Hansen MK, Mo TA (2000) Systemic infection with Uronema-like ciliates in farmed turbot, Scophthalmus maximus (L.). J Fish Dis 23:33–37

    Article  Google Scholar 

  • Tingaud-Sequeira A, Chauvigne F, Lozano J, Agulleiro MJ, Asensio E, Cerda J (2009) New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics 10:434

    Article  PubMed  Google Scholar 

  • Toda H, Araki K, Moritomo T, Nakanishi T (2011) Perforin-dependent cytotoxic mechanism in killing by CD8 positive T cells in ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol 35:88–93

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale J, Parham P (2004) Defence strategies and immunity-related genes. Eur J Immunol 34:7–17

    Article  PubMed  CAS  Google Scholar 

  • Tse HM, Milton MJ, Piganelli JD (2004) Mechanistic analysis of the immunomdulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic Biol Med 36:233–247

    Article  PubMed  CAS  Google Scholar 

  • Tsoi SC, Ewart KV, Penny S, Melville K, Liebscher RS, Brown LL, Douglas SE (2004) Identification of immune-relevant genes from Atlantic salmon using suppression subtractive hybridization. Mar Biotechnol 6:199–214

    Article  PubMed  CAS  Google Scholar 

  • Verhoef J (1991) The phagocytic process and the role of complement in host defense. J Chemother 3(Suppl 1):93–97

    PubMed  Google Scholar 

  • Wynne JW, O’Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliott NG (2008) Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. Mar Biotechnol 10:388–403

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Ping J, Yu Y, Yu F, Yu Y, Hao P, Li X (2010) Revealing parasite influence in metabolic pathways in Apicomplexa infected patients. BMC Bioinforma 11(11):S13

    Article  Google Scholar 

  • Zapata, A.G., Chibá, A., and Varas, A. (1996). Cells and tissues of the immune system of fish. In: The Fish Immune System. Organism, Pathogen and Environment (Iwama, G., and Nakanishi, T., eds.). Academic Press. pp 1–62.

Download references

Acknowledgments

This study was supported by a Consellería de Pesca e Asuntos Marítimos and the Dirección Xeral de I+D—Xunta de Galicia project (2004/CP480) and by the Spanish Government (Consolider Ingenio Aquagenomics: CSD200700002) project. Authors wish to thank Lucía Insua for technical assistance. Belén G. Pardo was supported by an Isidro Parga Pondal research fellowship from Xunta de Galicia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulino Martínez.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplemental Table S1

Fold change (FC) values of the differentially expressed genes of turbot in spleen (S), liver (L), and head kidney (HK) along the temporal series (1, 3, 7, 15, and 25 days) of infection with Philasterides dicentrarchi. (DOC 551 kb)

Supplemental Table S2

Annotation, functional category, expression profile (organ, time, up/down), and clustering with SOTA (Self Organizing Tree Algorithm; Dopazo and Carazo 1997) of the differentially expressed genes of turbot in response to Philasterides dicentrarchi. (DOC 466 kb)

Supplemental Fig. S1

Representation of turbot gene groups with similar gene profiles in response to Philasterides dicentrarchi obtained by SOTA (Self Organizing Tree Algorithm; Dopazo and Carazo 1997) algorithm. (A) Spleen (9 groups). (B) Liver (10 groups). (C) Head kidney (8 groups). Groups for each organ are numbered from left to right and then from top to bottom following the same numbering presented in Table S1. (DOC 595 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, B.G., Millán, A., Gómez-Tato, A. et al. Gene Expression Profiles of Spleen, Liver, and Head Kidney in Turbot (Scophthalmus maximus) Along the Infection Process with Philasterides dicentrarchi Using an Immune-Enriched Oligo-Microarray. Mar Biotechnol 14, 570–582 (2012). https://doi.org/10.1007/s10126-012-9440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9440-9

Keywords

Navigation