Skip to main content
Log in

Chemical Derivatization of Metabolite Mass Profiling of the Recretohalophyte Aeluropus lagopoides Revealing Salt Stress Tolerance Mechanism

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Plants are the primary producers of food for human being. Their intracellular environment alternation is influenced by abiotic stress factors such as drought, heat and soil salinity. Aeluropus lagopoides is a strong halophyte that grows with ease under high saline muddy banks of creeks of Gujarat, India. To study the response of salinity on metabolite changes in Aeluropus, three treatments, i.e. control, salinity and recovery, were selected for both shoot and root tissue. The cytosolic metabolite state was analysed by molecular chemical derivatization gas chromatography mass profiling. During saline treatment, significant increase of compatible solutes in shoot and root tissue was observed as compared to control. Subsequently, metabolic concentration decreased under recovery conditions. The metabolites like amino acids, organic acids and polyols were significantly detected in both shoot and root of Aeluropus under salinity. The metabolites like proline, aspartic acid, glycine, succinic acid and glycolic acid were significantly upregulated under stress. The salicylic acid was found to play a role in maintaining the polyols level by its down-regulation during salinity. The principle component analysis of all detected metabolites in both shoot and root showed that metabolites expressed under salinity (component 1) were highly variable, while metabolites expressed under recovery (component 2) were comparatively less variable as compared to control. The evolved intracellular compartmentalization of amino acids, organic acids and polyols in A. lagopoides can be a hallmark to sustaining at high salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36:255–259

    Article  CAS  Google Scholar 

  • Ashraf M, Fatima H (1995) Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.) Acta Physiol Plant 17:61–71

    CAS  Google Scholar 

  • Ashraf M, Tufail M (1995) Variation in salinity tolerance in sunflower (Helianthus annum L.) J Agron Crop Sci 174:351–362

    Article  CAS  Google Scholar 

  • Barchet GLH, Dauwe R, Guy RD, Schroeder WR, Soolanayakanahally RY, Campbell MM, Mansfield SD (2014) Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree Physiol 34:1203–1219

  • Buseman MC, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn WB, Ellis EI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Fernie AR (2013) Gas-chromatography mass-spectrometry (GC-MS) based metabolite profiling reveals mannitol as a major storage carbohydrate in the coccolithophorid alga Emiliania huxleyi. Meta 3:168–184

    Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Fougere F, Le Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.) Plant Physiol 96:1228–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants (Basel) 4:112–166

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014(701596):1–18

    Article  Google Scholar 

  • Halket J, Halket M, Waterman D, Przyborowska AM, Patel RKP, Fraser PD (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC / MS and LC / MS / MS. J Exp Bot 56:219–243

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CB, Jha D, Bacic A, Tester M, Roessner U (2013) Characterization of ion contents and metabolic responses to salt stress of different arabidopsis AtHKT1;1 genotypes and their parental strains. Mol Plant 6:350–368

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station, Circular No 347, pp 1–39

  • Hurkman WJ, Tao HP, Tanaka CK (1991) Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol 97:366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

  • Kalsoom U, Ij B, Mc B (2016) A review of extraction and analysis: methods for studying osmoregulants in plants. J Chromatogr Sep Tech 7:2157

    Google Scholar 

  • Kazachkova Y, Batushansky A, Cisneros A, Noemi TZ, Fait A, Barak S (2013) Growth platform-dependent and independent phenotypic and metabolic responses of Arabidopsis thaliana and its halophytic relative Eutrema salsugineum, to salt stress. Plant Physiol 162:1583–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kumar A, Lata C, Kumar S (2016) Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. S Afr J Bot 105:36–44

    Article  Google Scholar 

  • Liang Y, Strelkov SE, Kav NNV (2009) Oxalic acid-mediated stress responses in Brassica napus L. Proteomics 9:3156–3173

  • Mohsenzadeh S, Malboobi MA, Razavi K, Farrahi-Aschtiani S (2006) Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environ Exp Bot 56:314–322

    Article  CAS  Google Scholar 

  • Moinuddin M, Gulzar S, Ahmed MZ, Gul B, Koyro HW, Khan MA (2014) Excreting and non-excreting grasses exhibit different salt resistance strategies. AoB Plants 6:plu038

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Panuccio MR, Sidari M (2003) Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Sci 164:1103–1110

    Article  CAS  Google Scholar 

  • Naz N, Hameed M, Wahid A, Arshad M, Ahmad MSA (2009) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Plant 135:185–195

    Article  CAS  PubMed  Google Scholar 

  • Nedjimi B (2011) Is salinity tolerance related to osmolytes accumulation in Lygeum spartum L. seedlings. J Saudi Soc Agric Sci 10:81–87

    CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

  • Rai VK, Sharma SS, Sharma S (1986) Reversal of ABA-induced stomatal closure by phenolic compounds. J Exp Bot 37:129–134

    Article  CAS  Google Scholar 

  • Rajan N, Agarwal P, Patel K, Sanadhya P, Khedia J, Agarwal PK (2014) Molecular characterization and identification of target protein of an important vesicle trafficking gene AlRab7 from a salt excreting halophyte Aeluropus lagopoides. DNA Cell Biol 34:1–9

    Google Scholar 

  • Rontein D, Nishida I, Tashiro G, Yoshiok K, Wu WI, Voelker DR, Hanson AD (2001) Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem 276:35523–35529

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanadhya P, Agarwal P, Agarwal PK (2015a) Ion homeostasis in a salt-secreting halophytic grass. AoB Plants 7:plv055

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanadhya P, Agarwal P, Khedia J, Agarwal PK (2015b) A low-affinity K+ transporter AlHKT2;1 from recretohalophyte Aeluropus lagopoides confers salt tolerance in yeast. Mol Biotechnol 57:489–498

    Article  CAS  PubMed  Google Scholar 

  • Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Gontia I, Agarwal PK, Jha B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata , an extreme halophyte. Mar Biol Res 6:511–518

    Article  Google Scholar 

  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64:119–127

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Dias DA, Jayasinghe NS, Bacic A, Roessner U (2016) Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. J Exp Bot 67:3731–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu S, Yuan Y, Chen J, Sun J, Zhang W, Tang Y, Zhong M, Guo S (2015) The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci Report 5:14390

    Article  CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Singh PK, Gautam S (2013) Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant 35:2345–2353

    Article  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (poaceae), a halophyte C4 plant. J Proteome Res 9:2882–2897

    Article  CAS  PubMed  Google Scholar 

  • Storbart AK, Hendry AF (1978) Chlorophyll formation and glycine metabolism in laevulinic acid treated barley leaves. Phytochemistry 17:993–994

    Article  CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur PS and Rai VK (1982) Dynamics of amino acid accumulation in two differentially drought resistant Zea mays cultivars in response to osmotic stress. Environ Exp Bot 22:221-6

  • Wallace A (1963) Role of chelating agents on the availability of nutrients to plants. Soil Sci Soc Am Proc 27:176–179

    Article  CAS  Google Scholar 

  • Widodo, Patterson JH, Newbigin ED, Teste M, Bacic A, Roessne U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8:e55431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:214–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CSIR-CSMCRI Communication No.-171/2016 (as provided by BDIM). MKP, PA and PM acknowledge the financial support from CSIR-networking project, DST-WOS-A scheme and DST-INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Agarwal.

Electronic supplementary material

Figure S1

Total ionic chromatograms of metabolites in shoot and root of Aeluropus lagopoides under control, salinity stress and recovery conditions. Chromatogam of each peak retention time, molecular mass, quantity and molecular NIST similarity library search results were represented in Supplementary Tables 1 and 2. (GIF 252 kb)

High resolution image (TIFF 170 kb)

Figure S2

(GIF 212 kb)

High resolution image (TIFF 120 kb)

Table S1

(DOCX 34 kb)

Table S2

(DOCX 25 kb)

Table S3

(DOCX 19 kb)

Table S4

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paidi, M., Agarwal, P., More, P. et al. Chemical Derivatization of Metabolite Mass Profiling of the Recretohalophyte Aeluropus lagopoides Revealing Salt Stress Tolerance Mechanism. Mar Biotechnol 19, 207–218 (2017). https://doi.org/10.1007/s10126-017-9745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9745-9

Keywords

Navigation