Skip to main content
Log in

Preoperative 18[F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts early recurrence after pancreatic cancer resection

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

An important step in deciding the treatment strategy for pancreatic cancer is to preoperatively predict the possibility of early recurrence. We reviewed whether 18[F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) before pancreatic cancer resection could predict tumor recurrence in the early postoperative period.

Methods

FDG-PET/CT was performed preoperatively on 56 patients with pancreatic cancer. The maximum standardized uptake (SUVmax) values obtained by FDG-PET/CT were compared between two groups: patients with and without recurrence within the first 6 postoperative months. SUVmax analyses were also performed to determine whether age, sex, CA 19-9 values, the operative method, and portal vein resection were also predictive of recurrence within less than 6 months after tumor resection.

Results

The median SUVmax values of the recurrence group and no-recurrence group were 7.9 and 4.2, respectively (P = 0.0042). The SUVmax was the only risk factor for recurrence in the first 6 postoperative months identified by multivariate analysis (P = 0.0062).

Conclusions

Preoperative SUVmax was higher in the recurrence group during the early postoperative period, and a high SUVmax was a risk factor for early postoperative recurrence. Based on these results, we conclude that FDG-PET/CT is predictive of the recurrence of pancreatic cancer in the early postoperative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Satoi S, Yanagimoto H, Toyokawa H et al (2009) Surgical results after preoperative chemoradiation therapy for patients with pancreatic cancer. Pancreas 38:282–288

    Article  CAS  PubMed  Google Scholar 

  2. Takai S, Satoi S, Yanagimoto H et al (2008) Neoadjuvant chemoradiation in patients with potentially resectable pancreatic cancer. Pancreas 36:e26–e32

    Article  PubMed  Google Scholar 

  3. Wilkowski R, Wolf M, Heinemann V (2008) Primary advanced unresectable pancreatic cancer. Recent Results Cancer Res 177:79–93

    Article  CAS  PubMed  Google Scholar 

  4. Wilkowski R, Thoma M, Bruns C et al (2006) Chemoradiotherapy with gemcitabine and continuous 5-Fu in patients with primary inoperable pancreatic cancer. JOP 7:349–360

    PubMed  Google Scholar 

  5. Oettle H, Post S, Neuhaus P et al (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer. JAMA 297:267–277

    Article  CAS  PubMed  Google Scholar 

  6. Japan Pancreas Society (2009) General rules for the study of pancreatic cancer, 6th edn. Kanehara, Tokyo

    Google Scholar 

  7. Friess H, Langhans J, Ebert HG et al (1995) Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-d-glucose positron emission tomography. Gut 36:771–777

    Article  CAS  PubMed  Google Scholar 

  8. Stollfuss JC, Glatting G, Friess H et al (1995) 2-(fluorine-18)-Fluoro-2-deoxy-d-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology 195:339–344

    CAS  PubMed  Google Scholar 

  9. Koyama K, Okamura T, Kawabe J et al (2001) Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med 15:217–224

    Article  CAS  PubMed  Google Scholar 

  10. Higashi T, Tamaki N, Honda T et al (1997) Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study. J Nucl Med 38:1337–1344

    CAS  PubMed  Google Scholar 

  11. Lee JD, Yang WI, Park YN et al (2005) Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increase (18)F-FDG uptake. J Nucl Med 46:1753–1759

    CAS  PubMed  Google Scholar 

  12. Higashi T, Saga T, Nakamoto Y et al (2002) Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 43:173–180

    CAS  PubMed  Google Scholar 

  13. Vansteenkiste JF, Stroobants SG, Dupont PJ et al (1999) Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: analysis of 125 cases. J Clin Oncol 17:3201–3206

    CAS  PubMed  Google Scholar 

  14. Downey RJ, Akhurst T, Gonen M et al (2004) Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 22:3255–3260

    Article  PubMed  Google Scholar 

  15. Cerfolio RJ, Bryant AS, Ohja B et al (2005) The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 130:151–159

    Article  PubMed  Google Scholar 

  16. Rizk N, Downey RJ, Akhurst T et al (2006) Preoperative 18[F]-fluorodeoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg 81:1076–1081

    Article  PubMed  Google Scholar 

  17. Wakabayashi H, Nishiyama Y, Otani T et al (2008) Role of 18F-fluorodeoxyglucose positron emission tomography imaging in surgery for pancreatic cancer. World J Gastroenterol 14:64–69

    Article  PubMed  Google Scholar 

  18. van Kouwen MC, Jansen JB, van Goor H et al (2005) FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Eur J Nucl Med Mol Imaging 32:399–404

    Article  PubMed  Google Scholar 

  19. Seo S, Doi R, Machimoto T et al (2008) Contribution of 18F-fluorodexyglucose positron emission tomography to the diagnosis of early pancreatic carcinoma. J Hepatobiliary Pancreat Surg 15:634–639

    Article  PubMed  Google Scholar 

  20. Delbeke D, Pinson CW (2004) Pancreatic tumors: role of imaging in the diagnosis, staging, and treatment. J Hepatobiliary Pancreat Surg 11:4–10

    Article  PubMed  Google Scholar 

  21. Parson CM, Sutcliffe JL, Bold RJ (2008) Preoperative evaluation of pancreatic adenocarcinoma. J Hepatobiliary Pancreat Surg 15:429–435

    Article  Google Scholar 

  22. Maemura K, Takao S, Shinchi H et al (2006) Role of positron emission tomography in decisions on treatment strategies for pancreatic cancer. J Hepatobiliary Pancreat Surg 13:435–441

    Article  PubMed  Google Scholar 

  23. Doi R, Imamura M, Hosotani R et al (2008) Surgery versus radiochemotherapy for resectable locally invasive pancreatic cancer: final results of a randomized multi-institutional trial. Surg Today 38:1021–1028

    Article  PubMed  Google Scholar 

  24. Imamura M, Doi R, Imaizumi T et al (2004) A randomized multicenter trial comparing resection and radiochemotherapy for resectable locally invasive pancreatic cancer. Surgery 136:1003–1011

    Article  PubMed  Google Scholar 

  25. Showalter TN, Rao AS, Rani Anne P et al (2009) Does intraoperative radiation therapy improve local tumor control in patients undergoing pancreaticoduodenectomy for pancreatic adenocarcinoma? A propensity score analysis. Ann Surg Oncol 16:2116–2122

    Article  PubMed  Google Scholar 

  26. Ogawa K, Karasawa K, Ito Y et al (2010) Intraoperative radiotherapy for resected pancreatic cancer. Int J Radiat Oncol Biol Phys 3:734–742

    Google Scholar 

  27. Choi M, Heilbrun LK, Venkatramanamoorthy R et al (2010) Using 18F-fluorodeoxyglucose positron emission tomography to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am J Clin Oncol 33:257–261

    PubMed  Google Scholar 

  28. Wieder HA, Ott K, Lordick F et al (2007) Prediction of tumor response by FDG-PET: comparison of the accuracy of single and sequential studies in patients with adenocarcinomas of the esophagogastric junction. Eur J Nucl Med Mol Imaging 34:1925–1932

    Article  PubMed  Google Scholar 

  29. Farrag A, Ceulemans G, Voordeckers M et al (2010) Can 18F-FDG-PET response during radiotherapy be used as a predictive factor for the outcome of head and neck cancer patients? Nucl Med Commun 31:495–501

    PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors has any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kojun Okamoto.

About this article

Cite this article

Okamoto, K., Koyama, I., Miyazawa, M. et al. Preoperative 18[F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts early recurrence after pancreatic cancer resection. Int J Clin Oncol 16, 39–44 (2011). https://doi.org/10.1007/s10147-010-0124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-010-0124-z

Keywords

Navigation