Skip to main content

Advertisement

Log in

Dosimetric evaluation of whole breast radiotherapy using field-in-field technique in early-stage breast cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

The purpose of this study is to evaluate the dosimetric benefits of whole breast radiotherapy (WBRT) using the field-in-field technique compared with conventional tangential field radiotherapy with physical wedges for WBRT.

Methods

In this planning study, 20 patients were included. For each patient, two different treatment plans were created for the entire treated breast. The dosimetric parameters of the planning target volume for dose evaluation and the organs at risk for each planning technique were compared. In the clinical outcome, acute skin toxicity for each treatment technique was compared.

Results

The field-in-field technique significantly reduced the maximum dose, the volumes receiving >107% of the prescription dose, and homogeneity index for the planning target volume for dose evaluation compared with the tangential field technique. For each dosimetry of the organs at risk, excluding the contralateral breast, the field-in-field technique significantly reduced the maximum dose and the volumes receiving >10, 30, and 50 Gy of the prescribed dose. The volume receiving <1 Gy of the prescription dose for the contralateral breast was significantly decreased using the field-in-field technique. In addition, the dose distribution using the field-in-field technique in the target volume was less sensitive to the effects of breast motion during normal breathing. In the clinical outcome, the field-in-field technique significantly reduced Radiation Therapy Oncology Group (RTOG) grade II acute skin toxicity compared with the tangential field technique (3.1 vs. 10.6%).

Conclusions

WBRT using the field-in-field technique improved dose distribution in the treated breast and decreased RTOG grade II acute skin toxicity compared with conventional tangential field radiotherapy with physical wedges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ICRU Report No. 50 (1993) Prescribing, recording and reporting photon beam therapy. ICRU Bethesda, Maryland

  2. Buchholdz TA, Gurgoze E, Bice WS et al (1997) Dosimetric analysis of intact breast irradiation in off-axis planes. Int J Radiat Oncol Biol Phys 39:261–267

    Google Scholar 

  3. Cheng CW, Das IJ, Baldassarre S (1994) The effect of the number of computed tomographic slices on dose distributions and evaluation of treatment planning systems for radiation therapy of intact breast. Int J Radiat Oncol Biol Phys 30:183–195

    Article  PubMed  CAS  Google Scholar 

  4. Chin LM, Cheng CW, Siddon RL et al (1989) Three-dimensional photon dose distributions with, and without lung corrections for tangential breast intact treatments. Int J Radiat Oncol Biol Phys 17:1327–1335

    Article  PubMed  CAS  Google Scholar 

  5. Fraass BA, Lichter AS, McShan DL et al (1988) The influence of lung density corrections on the treatment planning for primary breast cancer. Int J Radiat Oncol Biol Phys 14:179–190

    Article  PubMed  CAS  Google Scholar 

  6. Das IJ, Cheng CW, Fein DA et al (1997) Patterns of dose variability in radiation prescription of breast cancer. Radiother Oncol 44:83–89

    Article  PubMed  CAS  Google Scholar 

  7. Gray JR, McMormick B, Cox L et al (1991) Primary breast irradiation in large-breasted or heavy women: analysis of cosmetic outcome. Int J Radiat Oncol Biol Phys 21:347–354

    Article  PubMed  CAS  Google Scholar 

  8. Moody AM, Mayles WP, Bliss JM et al (1994) The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol 33:106–112

    Article  PubMed  CAS  Google Scholar 

  9. Taylor ME, Perez CA, Halverson KJ et al (1995) Factors influencing cosmetic results after conversation therapy for breast cancer. Int J Radiat Oncol Biol Phys 31:753–764

    Article  PubMed  CAS  Google Scholar 

  10. Das IJ, Cheng CW, Fosmire H et al (1993) Tolerances in setup and dosimetric errors in the radiation treatment of breast cancer. Int J Radiat Oncol Biol Phys 26:883–890

    Article  PubMed  CAS  Google Scholar 

  11. Neal AJ, Torr M, Helyer S et al (1995) Correlation of breast heterogeneity with breast size using 3D CT planning and dose volume histograms. Radiother Oncol 34:210–218

    Article  PubMed  CAS  Google Scholar 

  12. Asbury L, Luttrell L, Lake D (1989) Achieving uniform dose with the use of a custom tissue compensator and a leveled beam for tangential breast fields. Med Dosim 14:161–171

    PubMed  CAS  Google Scholar 

  13. Johnson JM, Potish RA, Kahn FM (1996) Improved dose distribution with a universal acryl breast compensator. Med Dosim 21:127–132

    Article  PubMed  CAS  Google Scholar 

  14. Mayles WPM, Yarnold JR, Webb S (1991) Improved dose homogeneity in the breast using tissue compensators. Radiother Oncol 22:248–251

    Article  PubMed  CAS  Google Scholar 

  15. Valdagni R, Ciocca M, Busana L et al (1992) Beam modifying devices in the treatment of early breast cancer: 3D stepped compensating technique. Radiother Oncol 23:192–195

    Article  PubMed  CAS  Google Scholar 

  16. VanAken ML, Brememan JC, Elson HR et al (1998) Incorporation of patient immobilization, tissue compensation and matchline junction technique for three field breast treatment. Med Dosim 13:131–135

    Google Scholar 

  17. Fogliata A, Bolsi A, Cozzi L (2002) Critical appraisal of treatment techniques based on conventional photon beams, intensity modulated photon beams and proton beams for therapy of intact breast. Radiother Oncol 62:137–145

    Article  PubMed  Google Scholar 

  18. Nicolini G, Fogliata A, Cozzi L (2005) Critical appraisal of a non-coplanar technique for radiotherapy of breast minimizing lung involvement. Radiother Oncol 76:319–325

    Article  PubMed  Google Scholar 

  19. Fogliata A, Clivio A, Nicolini G et al (2007) A treatment planning study using non-coplanar static fields and coplanar arcs for whole breast radiotherapy of patients with concave geometry. Radiother Oncol 85:346–354

    Article  PubMed  Google Scholar 

  20. Kestin LK, Sharpe MB, Frazier RC et al (2000) Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys 48:1559–1568

    Article  PubMed  CAS  Google Scholar 

  21. Krueger EA, Fraass BA, McShan DL et al (2003) Potential gains for irradiation of chest wall and regional nodes with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 56:1023–1037

    Article  PubMed  Google Scholar 

  22. Mayo CS, Urie MM, Fitzgerald TJ (2005) Hybrid IMRT plans - concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int J Radiat Oncol Biol Phys 61:922–932

    Article  PubMed  Google Scholar 

  23. Lomax AJ, Cella L, Weber D et al (2003) Potential role of intensity-modulated photons and protons in the treatment of the breast and regional nodes. Int J Radiat Oncol Biol Phys 55:785–792

    Article  PubMed  Google Scholar 

  24. Ahunbay EE, Chen GP, Thatcher S et al (2007) Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 67:1248–1258

    Article  PubMed  Google Scholar 

  25. Wu Q, Mohan R, Morris M et al (2003) Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys 56:573–585

    Article  PubMed  Google Scholar 

  26. Lo YC, Yasuda G, Fitzgerald TJ et al (2000) Intensity modulation for breast treatment using static multileaf collimators. Int J Radiat Oncol Biol Phys 46:187–194

    Article  PubMed  CAS  Google Scholar 

  27. Zackrisson B, Arevarn M, Karlsson M (2000) Optimized MLC-beam arrangement for tangential breast irradiation. Radiother Oncol 54:209–212

    Article  PubMed  CAS  Google Scholar 

  28. Richmond ND, Turner RN, Dawes PJDK et al (2003) Evaluation of the dosimetric consequences of adding a single asymmetric or MLC shaped field to a tangential breast radiotherapy technique. Radiat Oncol 67:165–170

    Article  Google Scholar 

  29. Donovan EM, Johnson U, Shentall G et al (2000) Evaluation of compensation in breast radiotherapy: a planning study using multiple static fields. Int J Radiat Biol Phys 46:671–679

    Article  CAS  Google Scholar 

  30. Evans PM, Donovan EM, Partridge M et al (2000) The delivery of intensity modulated radiotherapy to the breast using multiple static fields. Radiother Oncol 57:79–89

    Article  PubMed  CAS  Google Scholar 

  31. Lee JW, Hong S, Choi KS et al (2008) Performance evaluation of field-in-field technique for tangential breast irradiation. Jpn J Clin Oncol 38:158–163

    Article  PubMed  Google Scholar 

  32. Herrick JS, Neill CJ, Rosser PF (2008) A comprehensive clinical 3-dimensional dosimetric analysis of forward planned IMRT and conventional wedge planned techniques for intact breast radiotherapy. Med Dosim 33:62–70

    Article  PubMed  Google Scholar 

  33. Barnett CC, Wilkinson J, Moody AM et al (2009) A randomized controlled trial of forward-planned radiotherapy (IMRT) for early breast cancer; baseline characteristics and dosimetry results. Radiother Oncol 92:34–41

    Article  PubMed  Google Scholar 

  34. Bhatnagar AK, Brandner E, Sonnik D et al (2006) Intensity modulated radiation therapy (IMRT) reduced the dose to the contralateral breast when compared to the conventional tangential fields for primary breast irradiation. Breast Cancer Res Treat 96:41–46

    Article  PubMed  Google Scholar 

  35. Woo TC, Pignol JP, Rakovitch E et al (2006) Body irradiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation techniques. Int J Radiat Oncol Biol Phys 1:52–58

    Google Scholar 

  36. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88

    Article  PubMed  Google Scholar 

  37. Whelan T, MacKenzie R, Julian J et al (2002) Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J Natl Cancer Inst 94:1143–1150

    PubMed  Google Scholar 

  38. The START Trialists’ Group (2008) The UK standardisation of breast radiotherapy (START) trial a of radiotherapy hypofraction for treatment of early breast cancer: a randomized trial. Lancet Oncol 9:331–341

    Article  Google Scholar 

  39. START The Trialists’ Group (2008) The UK standardisation of breast radiotherapy (START) Trial B of radiotherapy hypofraction for treatment of early breast cancer: a randomized trial. Lancet 371:1098–1107

    Article  Google Scholar 

  40. Xing L, Crooks S, Li JG et al (2000) Incorporating respiratory motion into the design of intensity maps in IMRT treatment of breast cancer. Int J Radiat Oncol Biol Phys 48:S99

    Google Scholar 

Download references

Conflict of interest

No actual or potential conflicts of interest exist regarding the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sasaoka.

About this article

Cite this article

Sasaoka, M., Futami, T. Dosimetric evaluation of whole breast radiotherapy using field-in-field technique in early-stage breast cancer. Int J Clin Oncol 16, 250–256 (2011). https://doi.org/10.1007/s10147-010-0175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-010-0175-1

Keywords

Navigation